login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344008
Triangle of numerators corresponding to A344007.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 5, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1
OFFSET
1,11
EXAMPLE
The triangle underlying A344007 begins:
1
1/2, 1/2
1/6, 1/3, 1/2
1/6, 1/4, 1/4, 1/3
2/15, 1/6, 1/5, 1/4, 1/4
1/12, 2/15, 1/6, 1/6, 1/5, 1/4
1/12, 3/28, 2/15, 1/7, 1/6, 1/6, 1/5
3/40, 1/12, 3/28, 1/8, 2/15, 1/7, 1/6, 1/6
1/18, 3/40, 1/12, 3/28, 1/9, 1/8, 2/15, 1/7, 1/6
1/18, 1/15, 3/40, 1/12, 1/10, 3/28, 1/9, 1/8, 2/15, 1/7
...
The numerators are:
1
1, 1
1, 1, 1
1, 1, 1, 1
2, 1, 1, 1, 1
1, 2, 1, 1, 1, 1
1, 3, 2, 1, 1, 1, 1
3, 1, 3, 1, 2, 1, 1, 1
1, 3, 1, 3, 1, 1, 2, 1, 1
1, 1, 3, 1, 1, 3, 1, 1, 2, 1
...
PROG
(PARI) lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow); ); drow = apply(numerator, row); for (k=1, #drow, print1(drow[k], ", ")); ); } \\ Michel Marcus, Jun 09 2021
CROSSREFS
Sequence in context: A334924 A211111 A074971 * A198067 A282749 A132587
KEYWORD
nonn,tabl
AUTHOR
Evan Lee, Jun 09 2021
EXTENSIONS
Corrected by Hugo Pfoertner and Michel Marcus, Jun 09 2021
STATUS
approved