login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282749 Triangle read by rows: T(n,k) is the number of partitions of n into k parts x_1, x_2, ..., x_k such that gcd(x_i, x_j) = 1 for all i != j (where 1<=k<=n). 4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 5, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 6, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

Column 2 is A023022. It appears that each row ends with some tail portion of the sequence (..., 89, 21, 89, 18, 68, 19, 53, 12, 58, 10, 40, 12, 30, 8, 31, 7, 20, 7, 17, 4, 16, 4, 9, 4, 8, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1). - Lars Blomberg Mar 08 2017

LINKS

Alois P. Heinz, Rows n = 1..200, flattened (first 100 rows from Lars Blomberg)

Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.

FORMULA

It seems that no general formula or recurrence is known.

EXAMPLE

Triangle begins:

1,

1, 1,

1, 1, 1,

1, 1, 1, 1,

1, 2, 1, 1, 1,

1, 1, 2, 1, 1, 1,

1, 3, 1, 2, 1, 1, 1,

1, 2, 3, 1, 2, 1, 1, 1,

1, 3, 2, 3, 1, 2, 1, 1, 1,

1, 2, 4, 2, 3, 1, 2, 1, 1, 1,

1, 5, 2, 4, 2, 3, 1, 2, 1, 1, 1,

1, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1,

1, 6, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1,

...

CROSSREFS

Cf. A051424 (row sums), A282749 (analog for compositions).

Sequence in context: A074971 A344008 A198067 * A132587 A318930 A235748

Adjacent sequences:  A282746 A282747 A282748 * A282750 A282751 A282752

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Mar 05 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 12:42 EDT 2021. Contains 348214 sequences. (Running on oeis4.)