login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033630
Number of partitions of n into distinct divisors of n.
82
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 8, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 35, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 26, 1, 1, 1, 2, 1, 24, 1, 1, 1, 1, 1, 22, 1, 1, 1, 3
OFFSET
0,7
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (1000 terms from T. D. Noe)
Noah Lebowitz-Lockard and Joseph Vandehey, On the number of partitions of a number into distinct divisors, arXiv:2402.08119 [math.NT], 2024. See p. 2.
FORMULA
a(n) = A065205(n) + 1.
a(A005100(n)) = 1; a(A005835(n)) > 1. - Reinhard Zumkeller, Mar 02 2007
a(n) = f(n, n, 1) with f(n, m, k) = if k <= m then f(n, m, k + 1) + f(n, m - k, k + 1)*0^(n mod k) else 0^m. - Reinhard Zumkeller, Dec 11 2009
a(n) = [x^n] Product_{d|n} (1 + x^d). - Ilya Gutkovskiy, Jul 26 2017
a(n) = 1 if n is deficient (A005100) or weird (A006037). a(n) = 2 if n is perfect (A000396). - Alonso del Arte, Sep 24 2017
EXAMPLE
a(12) = 3 because we have the partitions [12], [6, 4, 2], and [6, 3, 2, 1].
MAPLE
with(numtheory): a:=proc(n) local div, g, gser: div:=divisors(n): g:=product(1+x^div[j], j=1..tau(n)): gser:=series(g, x=0, 105): coeff(gser, x^n): end: seq(a(n), n=1..100); # Emeric Deutsch, Mar 30 2006
# second Maple program:
with(numtheory):
a:= proc(n) local b, l; l:= sort([(divisors(n))[]]):
b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
end; forget(b):
b(n, nops(l))
end:
seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
MATHEMATICA
A033630 = Table[SeriesCoefficient[Series[Times@@((1 + z^#) & /@ Divisors[n]), {z, 0, n}], n ], {n, 512}] (* Wouter Meeussen *)
A033630[n_] := f[n, n, 1]; f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k + 1] + f[n, m - k, k + 1] * Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[A033630, 101, 0] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)
PROG
(Haskell)
a033630 0 = 1
a033630 n = p (a027750_row n) n where
p _ 0 = 1
p [] _ = 0
p (d:ds) m = if d > m then 0 else p ds (m - d) + p ds m
-- Reinhard Zumkeller, Feb 23 2014, Apr 04 2012, Oct 27 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Reinhard Zumkeller, Apr 21 2003
STATUS
approved