login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340827
Number of strict integer partitions of n into divisors of n whose length also divides n.
9
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 18, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 17, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2, 1, 1, 1
OFFSET
1,6
COMMENTS
The first element not in A326715 that is however a Heinz number of these partitions is 273.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 2519 terms from Antti Karttunen)
EXAMPLE
The a(n) partitions for n = 6, 12, 24, 90, 84:
6 12 24 90 84
3,2,1 6,4,2 12,8,4 45,30,15 42,28,14
6,3,2,1 12,6,4,2 45,30,9,5,1 42,21,14,7
12,8,3,1 45,18,15,9,3 42,28,12,2
8,6,4,3,2,1 45,30,10,3,2 42,28,6,4,3,1
45,18,15,10,2 42,28,7,4,2,1
45,30,6,5,3,1 42,14,12,7,6,3
45,30,9,3,2,1 42,21,12,4,3,2
45,15,10,9,6,5 42,21,12,6,2,1
45,18,10,9,5,3 42,21,14,4,2,1
45,18,10,9,6,2 28,21,14,12,6,3
45,18,15,6,5,1 28,21,14,12,7,2
45,18,15,9,2,1 42,21,7,6,4,3,1
30,18,15,10,6,5,3,2,1 42,14,12,7,4,3,2
42,14,12,7,6,2,1
28,21,14,12,4,3,2
28,21,14,12,6,2,1
MATHEMATICA
Table[Length[Select[IntegerPartitions[n, All, Divisors[n]], UnsameQ@@#&&Divisible[n, Length[#]]&]], {n, 30}]
PROG
(PARI) A340827(n, divsleft=List(divisors(n)), rest=n, len=0) = if(rest<=0, !rest && !(n%len), my(s=0, d); forstep(i=#divsleft, 1, -1, d = divsleft[i]; listpop(divsleft, i); if(rest>=d, s += A340827(n, divsleft, rest-d, 1+len))); (s)); \\ Antti Karttunen, Feb 22 2023
(Scheme) ;; See the Links-section. - Antti Karttunen, Feb 22 2023
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A326842 (A326847).
A018818 = partitions using divisors (A326841).
A047993 = balanced partitions (A106529).
A067538 = partitions whose length/maximum divides sum (A316413/A326836).
A072233 = partitions by sum and length, with strict case A008289.
A102627 = strict partitions whose length divides sum.
A326850 = strict partitions whose maximum part divides sum.
A326851 = strict partitions w/ length and max dividing sum.
A340828 = strict partitions w/ length divisible by max.
A340829 = strict partitions w/ Heinz number divisible by sum.
A340830 = strict partitions w/ parts divisible by length.
Sequence in context: A319430 A285337 A328457 * A360119 A033630 A308608
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 01 2021
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Feb 22 2023
STATUS
approved