OFFSET
1,6
COMMENTS
The first element not in A326715 that is however a Heinz number of these partitions is 273.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 2519 terms from Antti Karttunen)
Antti Karttunen, Scheme program for computing this sequence
EXAMPLE
The a(n) partitions for n = 6, 12, 24, 90, 84:
6 12 24 90 84
3,2,1 6,4,2 12,8,4 45,30,15 42,28,14
6,3,2,1 12,6,4,2 45,30,9,5,1 42,21,14,7
12,8,3,1 45,18,15,9,3 42,28,12,2
8,6,4,3,2,1 45,30,10,3,2 42,28,6,4,3,1
45,18,15,10,2 42,28,7,4,2,1
45,30,6,5,3,1 42,14,12,7,6,3
45,30,9,3,2,1 42,21,12,4,3,2
45,15,10,9,6,5 42,21,12,6,2,1
45,18,10,9,5,3 42,21,14,4,2,1
45,18,10,9,6,2 28,21,14,12,6,3
45,18,15,6,5,1 28,21,14,12,7,2
45,18,15,9,2,1 42,21,7,6,4,3,1
30,18,15,10,6,5,3,2,1 42,14,12,7,4,3,2
42,14,12,7,6,2,1
28,21,14,12,4,3,2
28,21,14,12,6,2,1
MATHEMATICA
Table[Length[Select[IntegerPartitions[n, All, Divisors[n]], UnsameQ@@#&&Divisible[n, Length[#]]&]], {n, 30}]
PROG
(PARI) A340827(n, divsleft=List(divisors(n)), rest=n, len=0) = if(rest<=0, !rest && !(n%len), my(s=0, d); forstep(i=#divsleft, 1, -1, d = divsleft[i]; listpop(divsleft, i); if(rest>=d, s += A340827(n, divsleft, rest-d, 1+len))); (s)); \\ Antti Karttunen, Feb 22 2023
(Scheme) ;; See the Links-section. - Antti Karttunen, Feb 22 2023
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
A102627 = strict partitions whose length divides sum.
A326850 = strict partitions whose maximum part divides sum.
A326851 = strict partitions w/ length and max dividing sum.
A340828 = strict partitions w/ length divisible by max.
A340829 = strict partitions w/ Heinz number divisible by sum.
A340830 = strict partitions w/ parts divisible by length.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 01 2021
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Feb 22 2023
STATUS
approved