login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340825
a(n) is the smallest k such that A340745(k) - k = n.
5
1, 2, 4, 10, 28, 76, 206, 561, 1524, 4143, 11261, 30611, 83210, 226188, 614843, 1671317, 4543110, 12349453, 33569293, 91250800, 248045393, 674257283, 1832821321, 4982124892, 13542819562, 36813200321, 100068653479, 272014802350, 739412894299, 2009932634301
OFFSET
-1,2
COMMENTS
Let x_0 = 1. If x_1 + x_1^2 = x_0, then (using the positive root) x_1 = 1/phi = (sqrt(5) - 1)/2 = 0.61803....
If x_2 + x_2^2 = x_1, then (using the positive root) x_2 = 0.43168....
In general, for k > 0, if x_k + x_k^2 = x_(k-1), then (using the positive root) x_k = (sqrt(4*x_(k-1) + 1) - 1)/2.
The real-valued sequence {x_0, x_1, x_2, ...} begins {1.0, 0.61803..., 0.43168..., ...}; reciprocals are {1.0, 1.61803..., 2.31651..., ...} (see Example section). Truncating each of those reciprocals to integer gives a sequence in which the terms that appear twice are {1, 3, 9, 27, 75, ...}; incrementing each of these by 1 gives this sequence (after a(-1)=1).
For large values of k, we have x_k = x_(k-1) - x_(k-1)^2 + 2*x_(k-1)^3 - 5*x_(k-1)^4 + 14*x_(k-1)^5 - 42*x_(k-1)^6 + ...; the coefficients are Catalan numbers, with alternating signs.
Also, for large k, writing just "x" in place of "x(k)", k = 1/x - log(x) + c0 + (1/2)*x - (1/3)*x^2 + (13/36)*x^3 - (113/240)*x^4 + (1187/1800)*x^5 - (877/945)*x^6 + (14569/11760)*x^7 - (176017/120960)*x^8 + (1745717/1360800)*x^9 - (88217/259875)*x^10 - (147635381/109771200)*x^11 + (3238110769/1556755200)*x^12 - ... where c0 = -1.32912232216454200165271262369745253672... (A340875).
EXAMPLE
The integers that appear as the integer part of 1/x_k for two values of k are 1, 3, 9, 27, 75, 205, 560, ...; adding 1 to each of these gives the terms of this sequence. The sequence of values of k such that floor(1/x_k) = floor(1/x_(k-1)) is 1, 4, 11, 30, 79, ... (A340824).
x_k =
k (sqrt(4*x_(k-1)+1)-1)/2 1/x_k
-- ----------------------- ---------------------
0 1.000000000000000000000 1.000000000000000000
==> 1 0.618033988749894848205 ==> 1.618033988749894848
2 0.431683416590579253080 2.316512429173132330
3 0.325641215414164782161 3.070864352131090453
==> 4 0.258710231520680616003 ==> 3.865328379639529750
5 0.213239252649965007521 4.689568114560563292
6 0.180616817783666735278 5.536582984192242122
7 0.156214003038388944800 6.401474775307141564
8 0.137349200233583838142 7.280712216011038260
9 0.122373842825663615744 8.171680948392062100
10 0.110224420050249722669 9.072399741764251779
==> 11 0.100186987571581497269 ==> 9.981336141936806057
12 0.091765990549965195674 10.897283340013805067
13 0.084607552594016010352 11.819275813335917533
. . .
. . .
. . .
28 0.038387172830009749995 26.050368554837540742
29 0.037016920431758602512 27.014672974849948323
==> 30 0.035739601328629245203 ==> 27.980166616994380100
31 0.034546163889171732220 28.946774038591399743
32 0.033428686788751296736 29.914426681472229087
. . .
. . .
. . .
77 0.013510205832731656267 74.018117294502236762
78 0.013332451567920705001 75.004960258479861760
==> 79 0.013159284791691852519 ==> 75.991971891310727604
80 0.012990530898662741115 76.979147950215110113
81 0.012826024006838737492 77.966484349850560106
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Jan 22 2021
STATUS
approved