OFFSET
0,2
COMMENTS
Super Catalan number S(m,n) is [(2m)! (2n)! ] / [(m!) (n!) (m+n)! ], where m,n are nonnegative integers.
S(m,n) is a positive integer, but a combinatorial interpretation of S(m,n) is an open problem.
For each n, the sequence S(m,n) is decreasing then increasing, with minimum value at m = ceiling(n/3).
Our sequence is that list of values S( ceiling(n/3), n).
S(n,k-n) = C(2k,k) * C(k,n) / C(2k,2n). - Charlie Neder, Dec 27 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..2099
Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194.
Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3, 13 pp.
FORMULA
a(3*n) = A211419(n). - Peter Bala, Sep 24 2023
MATHEMATICA
nn = 30; {1}~Join~Table[Min@ Map[Function[n, ((2 m)! (2 n)!)/((m!) (n!) (m + n)!)], Range@ nn], {m, nn}] (* Michael De Vlieger, Jul 16 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Joseph Alfano (jalfano(AT)assumption.edu), Feb 24 2010
STATUS
approved