%I #20 Jan 26 2021 05:08:35
%S 1,2,4,10,28,76,206,561,1524,4143,11261,30611,83210,226188,614843,
%T 1671317,4543110,12349453,33569293,91250800,248045393,674257283,
%U 1832821321,4982124892,13542819562,36813200321,100068653479,272014802350,739412894299,2009932634301
%N a(n) is the smallest k such that A340745(k) - k = n.
%C Let x_0 = 1. If x_1 + x_1^2 = x_0, then (using the positive root) x_1 = 1/phi = (sqrt(5) - 1)/2 = 0.61803....
%C If x_2 + x_2^2 = x_1, then (using the positive root) x_2 = 0.43168....
%C In general, for k > 0, if x_k + x_k^2 = x_(k-1), then (using the positive root) x_k = (sqrt(4*x_(k-1) + 1) - 1)/2.
%C The real-valued sequence {x_0, x_1, x_2, ...} begins {1.0, 0.61803..., 0.43168..., ...}; reciprocals are {1.0, 1.61803..., 2.31651..., ...} (see Example section). Truncating each of those reciprocals to integer gives a sequence in which the terms that appear twice are {1, 3, 9, 27, 75, ...}; incrementing each of these by 1 gives this sequence (after a(-1)=1).
%C For large values of k, we have x_k = x_(k-1) - x_(k-1)^2 + 2*x_(k-1)^3 - 5*x_(k-1)^4 + 14*x_(k-1)^5 - 42*x_(k-1)^6 + ...; the coefficients are Catalan numbers, with alternating signs.
%C Also, for large k, writing just "x" in place of "x(k)", k = 1/x - log(x) + c0 + (1/2)*x - (1/3)*x^2 + (13/36)*x^3 - (113/240)*x^4 + (1187/1800)*x^5 - (877/945)*x^6 + (14569/11760)*x^7 - (176017/120960)*x^8 + (1745717/1360800)*x^9 - (88217/259875)*x^10 - (147635381/109771200)*x^11 + (3238110769/1556755200)*x^12 - ... where c0 = -1.32912232216454200165271262369745253672... (A340875).
%e The integers that appear as the integer part of 1/x_k for two values of k are 1, 3, 9, 27, 75, 205, 560, ...; adding 1 to each of these gives the terms of this sequence. The sequence of values of k such that floor(1/x_k) = floor(1/x_(k-1)) is 1, 4, 11, 30, 79, ... (A340824).
%e x_k =
%e k (sqrt(4*x_(k-1)+1)-1)/2 1/x_k
%e -- ----------------------- ---------------------
%e 0 1.000000000000000000000 1.000000000000000000
%e ==> 1 0.618033988749894848205 ==> 1.618033988749894848
%e 2 0.431683416590579253080 2.316512429173132330
%e 3 0.325641215414164782161 3.070864352131090453
%e ==> 4 0.258710231520680616003 ==> 3.865328379639529750
%e 5 0.213239252649965007521 4.689568114560563292
%e 6 0.180616817783666735278 5.536582984192242122
%e 7 0.156214003038388944800 6.401474775307141564
%e 8 0.137349200233583838142 7.280712216011038260
%e 9 0.122373842825663615744 8.171680948392062100
%e 10 0.110224420050249722669 9.072399741764251779
%e ==> 11 0.100186987571581497269 ==> 9.981336141936806057
%e 12 0.091765990549965195674 10.897283340013805067
%e 13 0.084607552594016010352 11.819275813335917533
%e . . .
%e . . .
%e . . .
%e 28 0.038387172830009749995 26.050368554837540742
%e 29 0.037016920431758602512 27.014672974849948323
%e ==> 30 0.035739601328629245203 ==> 27.980166616994380100
%e 31 0.034546163889171732220 28.946774038591399743
%e 32 0.033428686788751296736 29.914426681472229087
%e . . .
%e . . .
%e . . .
%e 77 0.013510205832731656267 74.018117294502236762
%e 78 0.013332451567920705001 75.004960258479861760
%e ==> 79 0.013159284791691852519 ==> 75.991971891310727604
%e 80 0.012990530898662741115 76.979147950215110113
%e 81 0.012826024006838737492 77.966484349850560106
%Y Cf. A340745, A340824, A340844, A340845, A340875.
%K nonn
%O -1,2
%A _Jon E. Schoenfield_, Jan 22 2021