login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340823
a(n) = exp(-1) * Sum_{k>=0} (k*(k - n))^n / k!.
2
1, 1, 3, 5, 124, -2075, 91993, -4709903, 312334595, -25531783799, 2524083665172, -296260739274275, 40667620527027177, -6446882734412545043, 1167717545574222779643, -239452569059443831797303, 55146244227862697483251020, -14163492441645773105212592623
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * Bell(2*n-k) * (-n)^k.
MATHEMATICA
Table[Exp[-1] Sum[(k (k - n))^n/k!, {k, 0, Infinity}], {n, 0, 17}]
Join[{1}, Table[Sum[Binomial[n, k] BellB[2 n - k] (-n)^k, {k, 0, n}], {n, 1, 17}]]
PROG
(Magma)
A340823:= func< n | (&+[(-n)^j*Binomial(n, j)*Bell(2*n-j): j in [0..n]]) >;
[A340823(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
(SageMath)
def A340823(n): return sum( binomial(n, k)*bell_number(2*n-k)*(-n)^k for k in range(n+1))
[A340823(n) for n in range(31)] # G. C. Greubel, Jun 12 2024
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 22 2021
STATUS
approved