OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 3*a(n-3) + 8*a(n-4) - 3*a(n-5) - 2*a(n-6).
Empirical g.f.: 2*x*(6 - 21*x + 12*x^2 + 18*x^3 - 8*x^4 - 5*x^5) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
..2.-2..2.-2...-2..2.-2..2...-2..0..0..1....2..0..0.-2...-2..2..0..2
.-2..2.-2..2....2.-2..2.-2....0..2.-2..1....0.-2..2..0....2.-2..0.-2
..2.-2..2.-2...-2..2.-2..2....0.-2..2.-1....0..2.-2..0....0..0..2..0
.-2..2.-2..2....2.-2..2.-2....1..1.-1..0...-2..0..0..2....2.-2..0.-2
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 02 2012
STATUS
approved