login
A211117
Number of (n+1) X (n+1) -2..2 symmetric matrices with every 2 X 2 subblock having sum zero and two, three or four distinct values.
1
12, 30, 72, 174, 422, 1028, 2510, 6134, 14988, 36594, 89250, 217416, 529010, 1285754, 3121904, 7573550, 18358950, 44474532, 107679342, 260584230, 630363356, 1524363938, 3685232642, 8907169352, 21524344338, 52005554058, 125635087296
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 3*a(n-3) + 8*a(n-4) - 3*a(n-5) - 2*a(n-6).
Empirical g.f.: 2*x*(6 - 21*x + 12*x^2 + 18*x^3 - 8*x^4 - 5*x^5) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
..2.-2..2.-2...-2..2.-2..2...-2..0..0..1....2..0..0.-2...-2..2..0..2
.-2..2.-2..2....2.-2..2.-2....0..2.-2..1....0.-2..2..0....2.-2..0.-2
..2.-2..2.-2...-2..2.-2..2....0.-2..2.-1....0..2.-2..0....0..0..2..0
.-2..2.-2..2....2.-2..2.-2....1..1.-1..0...-2..0..0..2....2.-2..0.-2
CROSSREFS
Sequence in context: A334791 A110019 A069486 * A301775 A175157 A371075
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 02 2012
STATUS
approved