login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058510
McKay-Thompson series of class 15C for Monster.
2
1, 0, 9, 19, 42, 78, 146, 249, 429, 695, 1125, 1749, 2713, 4086, 6123, 8986, 13122, 18852, 26934, 38001, 53328, 74068, 102336, 140208, 191153, 258741, 348606, 466806, 622383, 825342, 1090087, 1432923, 1876542, 2447029, 3179859, 4116282, 5311204, 6829008
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of -3 + (eta(q^3)*eta(q^5)/(eta(q)*eta(q^15)))^3 in powers of q. - G. C. Greubel, Jun 18 2018
a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
EXAMPLE
T15C = 1/q + 9*q + 19*q^2 + 42*q^3 + 78*q^4 + 146*q^5 + 249*q^6 + 429*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[-3 + (eta[q^3]*eta[q^5]/(eta[q]*eta[q^15]))^3, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
PROG
(PARI) q='q+O('q^50); A = -3 + (eta(q^3)*eta(q^5)/(eta(q)*eta(q^15)) )^3/q; Vec(A) \\ G. C. Greubel, Jun 18 2018
CROSSREFS
Cf. A153084 (same sequence except for n=0).
Sequence in context: A159697 A014005 A286624 * A043122 A043902 A048696
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 19 2014
STATUS
approved