login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058511
McKay-Thompson series of class 15D for the Monster group.
4
1, -2, -1, 2, 1, 4, -6, -2, 2, 0, 10, -14, -5, 8, 4, 20, -28, -10, 14, 4, 39, -56, -20, 28, 10, 72, -100, -34, 46, 16, 128, -176, -61, 86, 30, 216, -294, -100, 134, 44, 355, -484, -165, 226, 79, 568, -770, -260, 350, 116, 894, -1208, -408, 552, 188, 1376, -1848, -620, 830, 276, 2087, -2800, -940
OFFSET
0,2
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of q^(1/3) * (eta(q) / eta(q^5))^2 in powers of q.
Euler transform of period 5 sequence [ -2, -2, -2, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (45 t)) = 5 / f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (v - u^2) + 4*u*v.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + u*w + w^2 - v^2 * (u + w) - 5*v.
EXAMPLE
G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 4*x^5 - 6*x^6 - 2*x^7 + 2*x^8 + ...
T15D = 1/q - 2*q^2 - q^5 + 2*q^8 + q^11 + 4*q^14 - 6*q^17 - 2*q^20 + 2*q^23 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^5])^2, {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^5 + A))^2, n))}; /* Michael Somos, Dec 17 2010 */
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved