login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 15D for the Monster group.
4

%I #22 Nov 07 2015 11:23:57

%S 1,-2,-1,2,1,4,-6,-2,2,0,10,-14,-5,8,4,20,-28,-10,14,4,39,-56,-20,28,

%T 10,72,-100,-34,46,16,128,-176,-61,86,30,216,-294,-100,134,44,355,

%U -484,-165,226,79,568,-770,-260,350,116,894,-1208,-408,552,188,1376,-1848,-620,830,276,2087,-2800,-940

%N McKay-Thompson series of class 15D for the Monster group.

%H Vaclav Kotesovec, <a href="/A058511/b058511.txt">Table of n, a(n) for n = 0..1000</a>

%H J. H. Conway and S. P. Norton, <a href="http://blms.oxfordjournals.org/content/11/3/308.extract">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979) 308-339.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H J. McKay and H. Strauss, <a href="http://dx.doi.org/10.1080/00927879008823911">The q-series of monstrous moonshine and the decomposition of the head characters</a>, Comm. Algebra 18 (1990), no. 1, 253-278.

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of q^(1/3) * (eta(q) / eta(q^5))^2 in powers of q.

%F Euler transform of period 5 sequence [ -2, -2, -2, -2, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (45 t)) = 5 / f(t) where q = exp(2 Pi i t).

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (v - u^2) + 4*u*v.

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + u*w + w^2 - v^2 * (u + w) - 5*v.

%e G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 4*x^5 - 6*x^6 - 2*x^7 + 2*x^8 + ...

%e T15D = 1/q - 2*q^2 - q^5 + 2*q^8 + q^11 + 4*q^14 - 6*q^17 - 2*q^20 + 2*q^23 + ...

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^5])^2, {x, 0, n}]; (* _Michael Somos_, Aug 26 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^5 + A))^2, n))}; /* _Michael Somos_, Dec 17 2010 */

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K sign

%O 0,2

%A _N. J. A. Sloane_, Nov 27 2000