login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316654
Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.
9
1, 1, 5, 39, 387, 4960, 74088, 1312716, 26239484, 595023510, 14908285892, 412903136867, 12448252189622, 407804188400373, 14380454869464352, 544428684832123828, 21991444994187529639, 945234507638271696504, 43042162953650721470752, 2071216980365429970912347
OFFSET
1,3
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.
EXAMPLE
The a(3) = 5 trees are (1(12)), (1(23)), (2(13)), (3(12)), (123).
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1, m, Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])], UnsameQ@@#&]];
Table[Sum[Length[gro[m]], {m, Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n]}], {n, 5}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n]=polcoef(sWeighT(x*Ser(v[1..n])), n)); x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Jan 22 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 09 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 22 2021
STATUS
approved