login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244925 Number T(n,k) of n-node unlabeled rooted trees with every leaf at height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. 19
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 3, 2, 1, 1, 0, 1, 4, 5, 3, 2, 1, 1, 0, 1, 7, 7, 6, 3, 2, 1, 1, 0, 1, 8, 12, 8, 6, 3, 2, 1, 1, 0, 1, 12, 18, 15, 9, 6, 3, 2, 1, 1, 0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1, 0, 1, 21, 42, 39, 26, 17, 9, 6, 3, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,13

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

EXAMPLE

The A048816(5) = 5 rooted trees with 5 nodes with every leaf at the same height sorted by height are:

  :    o    :   o     o   :   o   :  o  :

  :  /( )\  :  / \    |   :   |   :  |  :

  : o o o o : o   o   o   :   o   :  o  :

  :         : |   |  /|\  :   |   :  |  :

  :         : o   o o o o :   o   :  o  :

  :         :             :  / \  :  |  :

  :         :             : o   o :  o  :

  :         :             :       :  |  :

  :         :             :       :  o  :

  :         :             :       :     :

  : ---1--- : -----2----- : --3-- : -4- :

Thus row 5 = [0, 1, 2, 1, 1].

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 1,  1;

  0, 1,  1,  1;

  0, 1,  2,  1,  1;

  0, 1,  2,  2,  1,  1;

  0, 1,  4,  3,  2,  1, 1;

  0, 1,  4,  5,  3,  2, 1, 1;

  0, 1,  7,  7,  6,  3, 2, 1, 1;

  0, 1,  8, 12,  8,  6, 3, 2, 1, 1;

  0, 1, 12, 18, 15,  9, 6, 3, 2, 1, 1;

  0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1;

MAPLE

with(numtheory):

T:= proc(n, k) option remember; `if`(n=1, 1, `if`(k=0, 0,

      add(add(`if`(d<k, 0, T(d, k-1)*d), d=divisors(j))*

      T(n-j, k), j=1..n-1)/(n-1)))

    end:

seq(seq(T(n, k), k=0..n-1), n=1..14);

MATHEMATICA

T[n_, k_] := T[n, k] = If[n == 1, 1, If[k == 0, 0, Sum[ Sum[ If[d<k, 0, T[d, k-1]*d], {d, Divisors[j]}] * T[n-j, k], {j, 1, n-1}]/(n-1)]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-Fran├žois Alcover, Jan 28 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007(n-1), A000012 (for n>0), A002865(n-1) (for n>2), A048808, A048809, A048810, A048811, A048812, A048813, A048814, A048815.

T(2n+1,n) gives A074045.

Row sums give A048816.

Sequence in context: A072233 A264391 A116598 * A068914 A090824 A264620

Adjacent sequences:  A244922 A244923 A244924 * A244926 A244927 A244928

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 10:29 EST 2020. Contains 332226 sequences. (Running on oeis4.)