login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A244925
Number T(n,k) of n-node unlabeled rooted trees with every leaf at height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
21
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 3, 2, 1, 1, 0, 1, 4, 5, 3, 2, 1, 1, 0, 1, 7, 7, 6, 3, 2, 1, 1, 0, 1, 8, 12, 8, 6, 3, 2, 1, 1, 0, 1, 12, 18, 15, 9, 6, 3, 2, 1, 1, 0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1, 0, 1, 21, 42, 39, 26, 17, 9, 6, 3, 2, 1, 1
OFFSET
1,13
LINKS
EXAMPLE
The A048816(5) = 5 rooted trees with 5 nodes with every leaf at the same height sorted by height are:
: o : o o : o : o :
: /( )\ : / \ | : | : | :
: o o o o : o o o : o : o :
: : | | /|\ : | : | :
: : o o o o o : o : o :
: : : / \ : | :
: : : o o : o :
: : : : | :
: : : : o :
: : : : :
: ---1--- : -----2----- : --3-- : -4- :
Thus row 5 = [0, 1, 2, 1, 1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 2, 1, 1;
0, 1, 2, 2, 1, 1;
0, 1, 4, 3, 2, 1, 1;
0, 1, 4, 5, 3, 2, 1, 1;
0, 1, 7, 7, 6, 3, 2, 1, 1;
0, 1, 8, 12, 8, 6, 3, 2, 1, 1;
0, 1, 12, 18, 15, 9, 6, 3, 2, 1, 1;
0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1;
...
MAPLE
with(numtheory):
T:= proc(n, k) option remember; `if`(n=1, 1, `if`(k=0, 0,
add(add(`if`(d<k, 0, T(d, k-1)*d), d=divisors(j))*
T(n-j, k), j=1..n-1)/(n-1)))
end:
seq(seq(T(n, k), k=0..n-1), n=1..14);
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 1, 1, If[k == 0, 0, Sum[ Sum[ If[d<k, 0, T[d, k-1]*d], {d, Divisors[j]}] * T[n-j, k], {j, 1, n-1}]/(n-1)]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007(n-1), A000012 (for n>0), A002865(n-1) (for n>2), A048808, A048809, A048810, A048811, A048812, A048813, A048814, A048815.
T(2n+1,n) gives A074045.
Row sums give A048816.
Sequence in context: A072233 A264391 A116598 * A068914 A090824 A264620
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 08 2014
STATUS
approved