login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A244928
Decimal expansion of Ti_2(2-sqrt(3)), where Ti_2 is the inverse tangent integral function.
2
2, 6, 5, 8, 6, 4, 9, 5, 8, 2, 7, 9, 3, 0, 6, 9, 8, 2, 6, 9, 1, 8, 7, 5, 0, 8, 6, 3, 9, 7, 1, 2, 0, 6, 8, 7, 6, 4, 2, 7, 8, 3, 8, 2, 3, 9, 7, 5, 1, 3, 8, 9, 9, 9, 3, 8, 0, 5, 9, 7, 4, 1, 5, 3, 2, 8, 5, 7, 4, 3, 9, 5, 1, 3, 0, 2, 7, 7, 1, 1, 4, 0, 5, 4, 4, 1, 1, 4, 0, 7, 0, 3, 2, 0, 5, 7, 7, 1, 7, 4, 0, 4, 5, 7, 1
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.7.6 Inverse Tangent Integral, p. 57.
LINKS
E. D. Krupnikov, K. S. Kölbig, Some special cases of the generalized hypergeometric function (q+1)Fq, J. Comp. Appl. Math. 78 (1997) 79-95.
Michael I. Shamos, A catalog of the real numbers, (2007). See p. 304.
Eric Weisstein's MathWorld, Inverse Tangent Integral.
Eric Weisstein's MathWorld, Polylogarithm.
FORMULA
2/3*G + Pi/12*log(2-Sqrt(3)), where G is Catalan's number.
Also equals i/2*(polylog(2, -i*(2-sqrt(3))) - polylog(2, i*(2-sqrt(3)))), with i = sqrt(-1).
Equals 3F2(1/2,1,1; 3/2,3/2 ; 1/4)/4 [Krupnikov] - R. J. Mathar, May 13 2024
EXAMPLE
0.26586495827930698269187508639712068764278382397513899938059741532857439513...
MATHEMATICA
2/3*Catalan + Pi/12*Log[2 - Sqrt[3]] // RealDigits[#, 10, 105]& // First
PROG
(PARI) default(realprecision, 100); (2/3)*Catalan + Pi/12*log(2 - sqrt(3)) \\ G. C. Greubel, Aug 25 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); (2/3)*Catalan(R) + Pi(R)/12*Log(2 - Sqrt(3)); // G. C. Greubel, Aug 25 2018
CROSSREFS
Sequence in context: A199159 A175293 A021083 * A319016 A262096 A011043
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved