OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.7.6 Inverse Tangent Integral, p. 57.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
E. D. Krupnikov, K. S. Kölbig, Some special cases of the generalized hypergeometric function (q+1)Fq, J. Comp. Appl. Math. 78 (1997) 79-95.
Michael I. Shamos, A catalog of the real numbers, (2007). See p. 304.
Eric Weisstein's MathWorld, Inverse Tangent Integral.
Eric Weisstein's MathWorld, Polylogarithm.
FORMULA
2/3*G + Pi/12*log(2-Sqrt(3)), where G is Catalan's number.
Also equals i/2*(polylog(2, -i*(2-sqrt(3))) - polylog(2, i*(2-sqrt(3)))), with i = sqrt(-1).
Equals 3F2(1/2,1,1; 3/2,3/2 ; 1/4)/4 [Krupnikov] - R. J. Mathar, May 13 2024
EXAMPLE
0.26586495827930698269187508639712068764278382397513899938059741532857439513...
MATHEMATICA
2/3*Catalan + Pi/12*Log[2 - Sqrt[3]] // RealDigits[#, 10, 105]& // First
PROG
(PARI) default(realprecision, 100); (2/3)*Catalan + Pi/12*log(2 - sqrt(3)) \\ G. C. Greubel, Aug 25 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); (2/3)*Catalan(R) + Pi(R)/12*Log(2 - Sqrt(3)); // G. C. Greubel, Aug 25 2018
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jul 08 2014
STATUS
approved