login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301479 Positive integers m such that m^3 cannot be written in the form x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers. 7
1, 53, 69, 71, 77, 87, 101, 103, 106, 117, 127, 133, 138, 142, 149, 159, 173, 174, 181, 191, 197, 199, 202, 206, 207, 212, 213, 221, 223, 229, 231, 234, 266, 269, 276, 277, 284, 293, 298, 309, 311, 325, 341, 346, 348, 351, 357, 362, 365, 373, 389, 398, 404, 412, 423, 424, 426, 429 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
It seems that this sequence has infinitely many terms. In contrast, the author conjectured in A301471 and A301472 that any square greater than one can be written as x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers.
It is known that a positive integer n has the form x^2 + 2*y^2 with x and y integers if and only if the p-adic order of n is even for any prime p == 5 or 7 (mod 8).
LINKS
EXAMPLE
a(1) = 1 since x^2 + 2*y^2 + 3*2^z > 1^3 for all x,y,z = 0,1,2,....
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n], i], 1], 8]==5||Mod[Part[Part[f[n], i], 1], 8]==7)&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[Do[If[QQ[m^3-3*2^k], Goto[aa]], {k, 0, Log[2, m^3/3]}]; tab=Append[tab, m]; Label[aa], {m, 1, 429}]; Print[tab]
CROSSREFS
Sequence in context: A160029 A229663 A223091 * A244187 A045807 A007644
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 22 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)