OFFSET
1,4
COMMENTS
A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
EXAMPLE
The a(9) = 11 rooted twice-partitions:
(7), (1111111),
(6)(), (33)(), (222)(), (111111)(), (11111)(1), (22)(2), (1111)(11),
(1111)(1)(), (111)(11)().
MATHEMATICA
twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn], {ptn, IntegerPartitions[n-1]}];
Table[Select[twirtns[n], UnsameQ@@Total/@#&&SameQ@@Join@@#&]//Length, {n, 20}]
PROG
(PARI) a(n)=if(n<3, 1, sum(k=1, n-2, polcoef(prod(j=0, (n-2)\k, 1 + x^(j*k + 1) + O(x^n)), n-1))) \\ Andrew Howroyd, Aug 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 26 2018
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Aug 26 2018
STATUS
approved