login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301766
Number of rooted twice-partitions of n where the first rooted partition is strict and the composite rooted partition is constant, i.e., of type (R,Q,R).
3
1, 1, 1, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 26, 32, 36, 42, 52, 59, 66, 79, 93, 108, 125, 141, 162, 192, 222, 248, 285, 331, 375, 430, 492, 555, 632, 719, 816, 929, 1051, 1177, 1327, 1510, 1701, 1908, 2146, 2408, 2705, 3035, 3388, 3792, 4257, 4751, 5284, 5894
OFFSET
1,4
COMMENTS
A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.
LINKS
EXAMPLE
The a(9) = 11 rooted twice-partitions:
(7), (1111111),
(6)(), (33)(), (222)(), (111111)(), (11111)(1), (22)(2), (1111)(11),
(1111)(1)(), (111)(11)().
MATHEMATICA
twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn], {ptn, IntegerPartitions[n-1]}];
Table[Select[twirtns[n], UnsameQ@@Total/@#&&SameQ@@Join@@#&]//Length, {n, 20}]
PROG
(PARI) a(n)=if(n<3, 1, sum(k=1, n-2, polcoef(prod(j=0, (n-2)\k, 1 + x^(j*k + 1) + O(x^n)), n-1))) \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 26 2018
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Aug 26 2018
STATUS
approved