OFFSET
6,1
COMMENTS
Old name was: "Number of stacks of n pikelets, distance 6 flips from a well-ordered stack".
LINKS
G. C. Greubel, Table of n, a(n) for n = 6..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: x^6*(133 + 972*x + 33*x^2 - 604*x^3 + 187*x^4 + 2*x^5 - 3*x^6) / (1-x)^7. - R. J. Mathar, Jun 21 2011
E.g.f.: (1/5!)*(116040 - 69480*x - 30540*x^2 - 2340*x^3 + 95*x^4 + 3*x^5 - (116040 - 185520*x + 96960*x^2 - 25880*x^3 + 3580*x^4 - 34*x^5 - 120*x^6)*exp(x)). - G. C. Greubel, Jan 03 2024
MATHEMATICA
(* Codes from Robert G. Wilson v, Jul 29 2018: Start *)
a[n_]:= n^6 - (883/60)*n^5 + (157/3)*n^4 + (2155/12)*n^3 - (4570/3)*n^2 + (42767/15)*n - 967; Table[a[n], {n, 6, 36}]
CoefficientList[ Series[x^6 (3x^6 -2x^5 -187x^4 +604x^3 -33x^2 -972x - 133)/(x-1)^7, {x, 0, 36}], x]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {133, 1903, 10561, 38015, 106461, 252737, 533397}, 36]
(* End *)
PROG
(Magma) [(60*n^6 -883*n^5 +3140*n^4 +10775*n^3 -91400*n^2 +171068*n -58020)/60: n in [6..46]]; // G. C. Greubel, Jan 03 2024
(SageMath) [(60*n^6 -883*n^5 +3140*n^4 +10775*n^3 -91400*n^2 +171068*n -58020)/60 for n in range(6, 47)] # G. C. Greubel, Jan 03 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Jun 15 2014
a(17)-a(32) from Robert G. Wilson v, Jul 29 2018
STATUS
approved