login
A133240
Dimensions of certain Lie algebra (see reference for precise definition).
2
1, 133, 7371, 238602, 5248750, 85709988, 1101296924, 11604306012, 103402141164, 797856027500, 5431803835220, 33125614508610, 183226228734150, 928793118827175, 4352687787515625, 18999500104801125, 77742635367237750, 299864450702202750
OFFSET
0,2
LINKS
J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.1, case a=4; Th. 7.2(i), case a = 4]
MAPLE
b:=binomial; t71:= proc(a, k) ((3*a+2*k+5)/(3*a+5)) * b(k+2*a+3, k)*b(k+5*a/2+3, k)*b(k+3*a+4, k)/(b(k+a/2+1, k)*b(k+a+1, k)); end; [seq(t71(4, k), k=0..30)];
MATHEMATICA
t71[a_, k_] := (3a+2k+5) / (3a+5) Binomial[k+2a+3, k] Binomial[k+5/2a+3, k] Binomial[k+3a+4, k] / (Binomial[k+a/2+1, k] Binomial[k+a+1, k]);
Array[t71[4, #]&, 30, 0] (* Paolo Xausa, Jan 11 2024 *)
CROSSREFS
Sequence in context: A028295 A262121 A254684 * A129050 A129049 A281496
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 15 2007
STATUS
approved