OFFSET
1,2
COMMENTS
Let SM_k = Sum( d_(t_1, t_2, ... , t_5)* eM_1^t_1 * eM_2^t_2 *...* eM_5^t_5) summed over all length 5 integer partitions of k, i.e., 1*t_1+2*t_2+...+5*t_5=k, where SM_k are the averaged k-th power sum symmetric polynomials in 5 data (i.e., SM_k = S_k/5 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(5,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2,... , t_5) form a triangle, with one row for each k value starting with k=1; the number of terms in successive rows is nondecreasing.
LINKS
Gregory Gerard Wojnar, Java program
EXAMPLE
Triangle begins:
1;
5, -4;
25, -30, 6;
125, -200, 40, 40, -4;
625, -1250, 250, 500, -100, -25, 1;
...
Above represents:
SM_1 = 1*eM_1;
SM_2 = 5*(eM_1)^2 -4*eM_2;
SM_3 = 25*(eM_1)^3 - 30*eM_1*eM_2 + 6*eM_3;
SM_4 = 125*(eM_1)^4 - 200*(eM_1)^2*eM_2 + 40*eM_1*eM_3 + 40*(eM_2)^2 - 4*eM_4;
SM_5 = 625*(eM_1)^5 - 1250*(eM_1)^3*eM_2 + 250*(eM_1)^2*eM_3 + 500*eM_1*(eM_2)^2 - 100*eM_2*eM_3 - 25*eM_1*eM_4 + 1*eM_5;
...
PROG
(Java) // See Java program link.
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Gregory Gerard Wojnar, Jun 06 2017
STATUS
approved