OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iteration of the mapping 00->0010, 1->010, starting with 00; see A288203.
See the Comments of A288203 for a proof of this conjecture. - Michel Dekking, Oct 12 2018
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (3, -1, -3, 2).
FORMULA
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4), where a(0) = 2, a(1) = 4, a(2) = 8, a(3) = 18.
G.f.: -((2*(1 - x - x^2 + 2*x^3))/((-1 + x)^2*(-1 + x + 2*x^2))).
a(n) = (-3 + (-1)^(1+n) + 2^(4+n) - 6*n) / 6. - Colin Barker, Sep 29 2017
MATHEMATICA
LinearRecurrence[{3, -1, -3, 2}, {2, 4, 8, 18}, 40]
PROG
(PARI) Vec(2*(1 - x - x^2 + 2*x^3) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Sep 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 07 2017
STATUS
approved