login
A220839
Tropical version of the degree-6 recurrence x(n+6)*x(n) = (x(n+5)*x(n+1))^2 + x(n+4)^2*x(n+3)^4*x(n+2)^2.
1
-1, 0, 0, 0, 0, 0, 1, 2, 4, 8, 18, 38, 79, 164, 342, 712, 1482, 3084, 6417, 13356, 27794, 57840, 120366, 250484, 521263, 1084758, 2257402, 4697696, 9775996, 20344034, 42336321, 88102688, 183343368, 381541032, 793994136, 1652316880, 3438502815, 7155589680
OFFSET
1,8
LINKS
Allan Fordy and Andrew Hone, Discrete integrable systems and Poisson algebras from cluster maps, arXiv:1207.6072 [nlin.SI], 2012. See Example 3.7.
FORMULA
Empirical g.f.: -x*(x^7+x^6-x^4+x^3+2*x^2+x-1) / ((x-1)*(x^2+x+1)*(x^4-x^3-2*x^2-x+1)*(x^6+x^3+1)). - Colin Barker, Jul 22 2013
MATHEMATICA
Join[{-1}, RecurrenceTable[{d[n + 6] + d[n] == Max[2*d[n + 5] + 2*d[n + 1], 2*d[n + 4] + 4*d[n + 3] + 2*d[n + 2]], d[2] == 0, d[3] == 0, d[4] == 0, d[5] == 0, d[6] == 0, d[7] == 1}, d, {n, 2, 50}]] (* G. C. Greubel, Aug 10 2018 *)
PROG
(PARI) a=vector(99); a[1]= -1; a[2]=a[3]=a[4]=a[5]=a[6]=0; for(n=7, #a, a[n]=2*max(a[n-1]+a[n-5], a[n-2]+2*a[n-3]+a[n-4])-a[n-6]); a; \\ Michel Marcus, Feb 08 2013
CROSSREFS
Sequence in context: A018096 A024415 A339158 * A288206 A371791 A218078
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 23 2012
EXTENSIONS
More terms from Michel Marcus, Feb 08 2013
Definition corrected by N. J. A. Sloane, Jan 11 2024 at the suggestion of Helmut Ruhland.
STATUS
approved