OFFSET
1,2
COMMENTS
Another version in A201701. - Philippe Deléham, Mar 03 2012
Subtriangle of the triangle given by (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012
Columns: A011782, A001792, A001793, A001794, A006974, A006975, A006976. - Philippe Deléham, Mar 03 2012
Diagonal sums: A052980. - Philippe Deléham, Mar 03 2012
FORMULA
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), v(n,x) = u(n-1,x) + v(n-1,x), where u(1,x)=1, v(1,x)=1. Also, A207537 = |A028297|.
T(n,k) = 2*T(n-1,k) + T(n-2,k-1). - Philippe Deléham, Mar 03 2012
G.f.: -(1+x*y)*x*y/(-1+2*x+x^2*y). - R. J. Mathar, Aug 11 2015
T(n, k) = [x^k] hypergeom([-n/2, -n/2 + 1/2], [1/2], x + 1) provided offset is set to 0 and 1 prepended. - Peter Luschny, Feb 03 2021
EXAMPLE
First seven rows:
1;
2, 1;
4, 3;
8, 8, 1;
16, 20, 5,
32, 48, 18, 1;
64, 112, 56, 7;
From Philippe Deléham, Mar 03 2012: (Start)
Triangle A201701 begins:
1;
1, 0;
2, 1, 0;
4, 3, 0, 0;
8, 8, 1, 0, 0;
16, 20, 5, 0, 0, 0;
32, 48, 18, 1, 0, 0, 0;
64, 112, 56, 7, 0, 0, 0, 0;
... (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
(* Prepending 1 and with offset 0: *)
Tpoly[n_] := HypergeometricPFQ[{-n/2, -n/2 + 1/2}, {1/2}, x + 1];
Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Feb 18 2012
STATUS
approved