login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207537
Triangle of coefficients of polynomials u(n,x) jointly generated with A207538; see Formula section.
4
1, 2, 1, 4, 3, 8, 8, 1, 16, 20, 5, 32, 48, 18, 1, 64, 112, 56, 7, 128, 256, 160, 32, 1, 256, 576, 432, 120, 9, 512, 1280, 1120, 400, 50, 1, 1024, 2816, 2816, 1232, 220, 11, 2048, 6144, 6912, 3584, 840, 72, 1, 4096, 13312, 16640, 9984, 2912, 364, 13
OFFSET
1,2
COMMENTS
Another version in A201701. - Philippe Deléham, Mar 03 2012
Subtriangle of the triangle given by (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012
Diagonal sums: A052980. - Philippe Deléham, Mar 03 2012
FORMULA
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), v(n,x) = u(n-1,x) + v(n-1,x), where u(1,x)=1, v(1,x)=1. Also, A207537 = |A028297|.
T(n,k) = 2*T(n-1,k) + T(n-2,k-1). - Philippe Deléham, Mar 03 2012
G.f.: -(1+x*y)*x*y/(-1+2*x+x^2*y). - R. J. Mathar, Aug 11 2015
T(n, k) = [x^k] hypergeom([-n/2, -n/2 + 1/2], [1/2], x + 1) provided offset is set to 0 and 1 prepended. - Peter Luschny, Feb 03 2021
EXAMPLE
First seven rows:
1;
2, 1;
4, 3;
8, 8, 1;
16, 20, 5,
32, 48, 18, 1;
64, 112, 56, 7;
From Philippe Deléham, Mar 03 2012: (Start)
Triangle A201701 begins:
1;
1, 0;
2, 1, 0;
4, 3, 0, 0;
8, 8, 1, 0, 0;
16, 20, 5, 0, 0, 0;
32, 48, 18, 1, 0, 0, 0;
64, 112, 56, 7, 0, 0, 0, 0;
... (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
(* Prepending 1 and with offset 0: *)
Tpoly[n_] := HypergeometricPFQ[{-n/2, -n/2 + 1/2}, {1/2}, x + 1];
Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Feb 18 2012
STATUS
approved