OFFSET
1,3
COMMENTS
Subtriangle of the triangle given by (1, 0, 1, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 08 2012
FORMULA
u(n,x) = u(n-1,x) + 2x*v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x)/(1-2*x+x^2-2*y*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = A034839(n,k)*2^k = binomial(n,2*k)*2^k . (End)
EXAMPLE
First seven rows:
1;
1, 2;
1, 6,
1, 12, 4;
1, 20, 20,
1, 30, 60, 8;
1, 42, 140, 56;
From Philippe Deléham, Apr 08 2012: (Start)
(1, 0, 1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 6, 0, 0;
1, 12, 4, 0, 0;
1, 20, 20, 0, 0, 0;
1, 30, 60, 8, 0, 0, 0;
1, 42, 140, 56, 0, 0, 0, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207536 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A105070 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Feb 18 2012
STATUS
approved