login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001795
Coefficients of Legendre polynomials.
(Formerly M4407 N1861)
6
1, 1, 7, 33, 715, 4199, 52003, 334305, 17678835, 119409675, 1641030105, 11435320455, 322476036831, 2295919134019, 32968493968795, 238436656380769, 27767032438524099, 203236010537432691, 2989949596465113373
OFFSET
0,3
COMMENTS
Numerators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005
Coefficient of Legendre_0(x) when x^n is written in term of Legendre polynomials. - Michel Marcus, May 28 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
1/(sqrt(1-x) + sqrt(1+x)) = Sum_{n>=0} (a(n)/b(n))*x^(2n) where b(n) is a power of 2. - Benoit Cloitre, Mar 12 2002
For n >= 1, 2^(n+1)*a(2^(n-1)) = A001791(2^n). - Vladimir Shevelev, Sep 05 2010
a(n) = numerator(binomial(2*n-1/2, n)/(2*n+1)). - Tani Akinari, Oct 22 2024
PROG
(PARI) my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(1/2))) \\ Michel Marcus, Feb 04 2022
(PARI) a(n)=numerator(binomial(2*n-1/2, n)/(2*n+1)) \\ Tani Akinari, Oct 22 2024
CROSSREFS
Divisor of A048990 and A065097. Apparently a bisection of A002596.
Bisection of A099024.
Sequence in context: A202762 A202757 A266018 * A336277 A209897 A209814
KEYWORD
nonn
EXTENSIONS
More terms from Benoit Cloitre, Mar 12 2002
STATUS
approved