login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182819
G.f.: exp( Sum_{n>=1} sigma(3n)*x^n/n ).
15
1, 4, 14, 39, 101, 238, 533, 1131, 2314, 4566, 8763, 16376, 29939, 53612, 94302, 163112, 277953, 467064, 774943, 1270528, 2060331, 3306771, 5256579, 8280649, 12934125, 20040761, 30817437, 47048638, 71339593, 107469716, 160898163
OFFSET
0,2
COMMENTS
sigma(3n) = A000203(3n), the sum of divisors of 3n (A144613).
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).
In general, if r>0 and g.f. = Product_{k>=1} (1 - x^(r*k))/(1 - x^k)^(r+1) then a(n) ~ (r+1-1/r)^((r+1)/4) * exp(Pi*sqrt(2*(r+1-1/r)*n/3)) / (sqrt(r) * 2^((3*r+5)/4) * 3^((r+1)/4) * n^((r+3)/4)). - Vaclav Kotesovec, Nov 28 2016
LINKS
FORMULA
Generating function A(x) = E(x^3)/E(x)^4 where E(x) = Product_{n>=1} (1-x^n). [Joerg Arndt, Dec 05 2010]
a(n) ~ 11*exp(sqrt(22*n)*Pi/3) / (72*sqrt(6)*n^(3/2)). - Vaclav Kotesovec, Nov 26 2016
From Peter Bala, Jan 24 2016: (Start)
A(x^3) = P(x)*P(w*x)*P(w^2*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n), and where w = exp(2*Pi*i/3) is a primitive cube root of unity.
a(n) = Sum_{j = 0..3*n} ( Sum_{k = 0..3*n-j} w^(j+2*k)*p(k)*p(j) *p(3*n-j-k) ). (End)
EXAMPLE
G.f.: A(x) = 1 + 4*x + 14*x^2 + 39*x^3 + 101*x^4 + 238*x^5 +...
log(A(x)) = 4*x + 12*x^2/2 + 13*x^3/3 + 28*x^4/4 + 24*x^5/5 + 39*x^6/6 + 32*x^7/7 + 60*x^8/8 +...+ sigma(3n)*x^n/n +...
MAPLE
w := exp(2*Pi*sqrt(-1)*(1/3)):
with(combinat):
seq(simplify(add(add(w^(j+2*k)*numbpart(j)*numbpart(k)*numbpart(3*n-j-k), k = 0..3*n-j), j = 0..3*n)), n = 0..30);
# Peter Bala, Jan 24 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 26 2016 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sigma(3*m)*x^m/m)+x*O(x^n)), n)}
(PARI) default(seriesprecision, 66); Vec(eta(x^3)/eta(x)^4)\\ Joerg Arndt, Dec 06 2010
CROSSREFS
Sequence in context: A055484 A055279 A074083 * A144141 A187594 A326482
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Dec 05 2010
STATUS
approved