login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224613 a(n) = sigma(6*n). 26
12, 28, 39, 60, 72, 91, 96, 124, 120, 168, 144, 195, 168, 224, 234, 252, 216, 280, 240, 360, 312, 336, 288, 403, 372, 392, 363, 480, 360, 546, 384, 508, 468, 504, 576, 600, 456, 560, 546, 744, 504, 728, 528, 720, 720, 672, 576, 819, 684, 868, 702, 840, 648 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjectures: sigma(6n) > sigma(6n - 1) and sigma(6n) > sigma(6n + 1).

Conjectures are false. Try prime 73961483429 for n. One finds sigma(6*73961483429) < sigma(6*73961483429+1). The number n = 105851369791 provides a counterexample for the other case. - T. D. Noe, Apr 22 2013

Sum of the divisors of the numbers k which have the property that the width associated to the vertex of the first (also the last) valley of the smallest Dyck path of the symmetric representation of sigma(k) is equal to 2 (see example). Other positive integers have width 0 or 1 associated to the mentioned valley. - Omar E. Pol, Aug 11 2021

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A000203(6n).

a(n) = A000203(A008588(n)). - Omar E. Pol, Aug 11 2021

EXAMPLE

From Omar E. Pol, Aug 11 2021: (Start)

Illustration of initial terms:

----------------------------------------------------------------------

   n    6*n   a(n)    Diagram:  1           2           3           4

----------------------------------------------------------------------

                                _           _           _           _

                               | |         | |         | |         | |

                               | |         | |         | |         | |

                          * _ _| |         | |         | |         | |

                           |  _ _|         | |         | |         | |

                      _ _ _| |_|           | |         | |         | |

   1     6     12    |_ _ _ _|      * _ _ _| |         | |         | |

                                    _|  _ _ _|         | |         | |

                                * _|  _| |             | |         | |

                                 |  _|  _|    * _ _ _ _| |         | |

                                 | |_ _|       |  _ _ _ _|         | |

                      _ _ _ _ _ _| |          _| | |               | |

   2    12     28    |_ _ _ _ _ _ _|        _|  _|_|    * _ _ _ _ _| |

                                      * _ _|  _|         |  _ _ _ _ _|

                                       |  _ _|        _ _| | |

                                       | |_ _|      _|  _ _| |

                                       | |        _|  _|  _ _|

                      _ _ _ _ _ _ _ _ _| |       |  _|  _|

   3    18     39    |_ _ _ _ _ _ _ _ _ _|  * _ _| |  _|

                                             |  _ _| |

                                             | |_ _ _|

                                             | |

                                             | |

                      _ _ _ _ _ _ _ _ _ _ _ _| |

   4    24     60    |_ _ _ _ _ _ _ _ _ _ _ _ _|

.

Note that the mentioned vertices are aligned on two straight lines that meet at point (3,3).

a(n) equals the area (also the number of cells) in the n-th diagram. (End)

MATHEMATICA

DivisorSigma[1, 6*Range[60]] (* Harvey P. Dale, Apr 16 2016 *)

PROG

(PARI) a(n)=sigma(6*n) \\ Charles R Greathouse IV, Apr 22 2013

(Python)

from sympy import divisor_sigma

def a(n):  return divisor_sigma(6*n)

print([a(n) for n in range(1, 54)]) # Michael S. Branicky, Dec 28 2021

CROSSREFS

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), this sequence (k=6), A283078 (k=7).

Cf. A000203 (sigma(n)), A053224 (n: sigma(n) < sigma(n+1)).

Cf. A067825 (even n: sigma(n)< sigma(n+1)).

Cf. A008588, A237593.

Sequence in context: A255136 A087252 A141274 * A134618 A108405 A184838

Adjacent sequences:  A224610 A224611 A224612 * A224614 A224615 A224616

KEYWORD

nonn

AUTHOR

Zak Seidov, Apr 22 2013

EXTENSIONS

Corrected by Harvey P. Dale, Apr 16 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 19:12 EDT 2022. Contains 356215 sequences. (Running on oeis4.)