login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224613
a(n) = sigma(6*n).
33
12, 28, 39, 60, 72, 91, 96, 124, 120, 168, 144, 195, 168, 224, 234, 252, 216, 280, 240, 360, 312, 336, 288, 403, 372, 392, 363, 480, 360, 546, 384, 508, 468, 504, 576, 600, 456, 560, 546, 744, 504, 728, 528, 720, 720, 672, 576, 819, 684, 868, 702, 840, 648
OFFSET
1,1
COMMENTS
Conjectures: sigma(6n) > sigma(6n - 1) and sigma(6n) > sigma(6n + 1).
Conjectures are false. Try prime 73961483429 for n. One finds sigma(6*73961483429) < sigma(6*73961483429+1). The number n = 105851369791 provides a counterexample for the other case. - T. D. Noe, Apr 22 2013
Sum of the divisors of the numbers k which have the property that the width associated to the vertex of the first (also the last) valley of the smallest Dyck path of the symmetric representation of sigma(k) is equal to 2 (see example). Other positive integers have width 0 or 1 associated to the mentioned valley. - Omar E. Pol, Aug 11 2021
LINKS
FORMULA
a(n) = A000203(6n).
a(n) = A000203(A008588(n)). - Omar E. Pol, Aug 11 2021
Sum_{k=1..n} a(k) = (55*Pi^2/72) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
EXAMPLE
From Omar E. Pol, Aug 11 2021: (Start)
Illustration of initial terms:
----------------------------------------------------------------------
n 6*n a(n) Diagram: 1 2 3 4
----------------------------------------------------------------------
_ _ _ _
| | | | | | | |
| | | | | | | |
* _ _| | | | | | | |
| _ _| | | | | | |
_ _ _| |_| | | | | | |
1 6 12 |_ _ _ _| * _ _ _| | | | | |
_| _ _ _| | | | |
* _| _| | | | | |
| _| _| * _ _ _ _| | | |
| |_ _| | _ _ _ _| | |
_ _ _ _ _ _| | _| | | | |
2 12 28 |_ _ _ _ _ _ _| _| _|_| * _ _ _ _ _| |
* _ _| _| | _ _ _ _ _|
| _ _| _ _| | |
| |_ _| _| _ _| |
| | _| _| _ _|
_ _ _ _ _ _ _ _ _| | | _| _|
3 18 39 |_ _ _ _ _ _ _ _ _ _| * _ _| | _|
| _ _| |
| |_ _ _|
| |
| |
_ _ _ _ _ _ _ _ _ _ _ _| |
4 24 60 |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the mentioned vertices are aligned on two straight lines that meet at point (3,3).
a(n) equals the area (also the number of cells) in the n-th diagram. (End)
MATHEMATICA
DivisorSigma[1, 6*Range[60]] (* Harvey P. Dale, Apr 16 2016 *)
PROG
(PARI) a(n)=sigma(6*n) \\ Charles R Greathouse IV, Apr 22 2013
(Python)
from sympy import divisor_sigma
def a(n): return divisor_sigma(6*n)
print([a(n) for n in range(1, 54)]) # Michael S. Branicky, Dec 28 2021
(Python)
from math import prod
from collections import Counter
from sympy import factorint
def A224613(n): return prod((p**(e+1)-1)//(p-1) for p, e in (Counter(factorint(n))+Counter([2, 3])).items()) # Chai Wah Wu, Sep 07 2023
CROSSREFS
Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), this sequence (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A000203 (sigma(n)), A053224 (n: sigma(n) < sigma(n+1)).
Cf. A067825 (even n: sigma(n)< sigma(n+1)).
Sequence in context: A255136 A087252 A141274 * A134618 A108405 A184838
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 22 2013
EXTENSIONS
Corrected by Harvey P. Dale, Apr 16 2016
STATUS
approved