login
A224614
Primes p such that q = 2*p^3-1 and 2*p*q^2-1 are both prime.
4
181, 199, 4363, 4549, 14563, 15073, 15739, 27361, 27901, 33469, 34231, 37123, 46279, 48271, 48673, 54193, 56101, 64591, 64609, 65539, 65731, 70183, 70891, 75703, 75979, 77659, 77863, 80953, 94309, 112573, 114889, 115153, 117361, 118189, 135799, 144751
OFFSET
1,1
COMMENTS
When A224610(i) = 1 then prime(i) is in this sequence.
Subsequence of A177104. - R. J. Mathar, Apr 19 2013
MATHEMATICA
Reap[For[p = 2, p < 200000, p = NextPrime[p], If[PrimeQ[q = 2*p^3 - 1] && PrimeQ[r = 2*p*q^2 - 1], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 19 2013 *)
bpQ[n_]:=Module[{c=2n^3-1}, AllTrue[{c, 2n*c^2-1}, PrimeQ]]; Select[ Prime[ Range[ 15000]], bpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 05 2015 *)
PROG
(Magma) [p: p in PrimesUpTo(180000) | IsPrime(q) and IsPrime(2*p*q^2-1) where q is 2*p^3-1 ]; // Bruno Berselli, Apr 19 2013
CROSSREFS
Sequence in context: A159263 A159548 A206281 * A216309 A139648 A142519
KEYWORD
nonn
AUTHOR
Pierre CAMI, Apr 12 2013
STATUS
approved