login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159548
Positive numbers y such that y^2 is of the form x^2+(x+199)^2 with integer x.
3
181, 199, 221, 865, 995, 1145, 5009, 5771, 6649, 29189, 33631, 38749, 170125, 196015, 225845, 991561, 1142459, 1316321, 5779241, 6658739, 7672081, 33683885, 38809975, 44716165, 196324069, 226201111, 260624909, 1144260529, 1318396691
OFFSET
1,1
COMMENTS
(-19,a(1)) and (A129993(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+199)^2 = y^2.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=181, a(2)=199, a(3)=221, a(4)=865, a(5)=995, a(6)=1145.
G.f.: x*(1-x)*(181+380*x+601*x^2+380*x^3+181*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 199*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 1.
EXAMPLE
(-19, a(1)) = (-19, 181) is a solution: (-19)^2+(-19+199)^2 = 361+32400 = 32761 = 181^2.
(A129993(1), a(2)) = (0, 199) is a solution: 0^2+(0+199)^2 = 39601 = 199^2.
(A129993(3), a(4)) = (504, 865) is a solution: 504^2+(504+199)^2 = 254016+494209 = 748225 = 865^2.
PROG
(PARI) {forstep(n=-20, 50000000, [1, 3], if(issquare(2*n^2+398*n+39601, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129993, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159549 (decimal expansion of (201+20*sqrt(2))/199), A159550 (decimal expansion of (91443+58282*sqrt(2))/199^2).
Sequence in context: A253156 A139649 A159263 * A206281 A224614 A216309
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 14 2009
STATUS
approved