Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 29 2024 21:10:53
%S 7,15,28,31,42,60,56,63,91,90,84,124,98,120,168,127,126,195,140,186,
%T 224,180,168,252,217,210,280,248,210,360,224,255,336,270,336,403,266,
%U 300,392,378,294,480,308,372,546,360,336,508,399,465,504,434,378,600,504,504,560,450,420,744,434,480,728,511,588,720
%N Sum of divisors of 4*n.
%H Seiichi Manyama, <a href="/A193553/b193553.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = sigma(4*n) = A000203(4*n).
%F a(n) = 3*sigma(2*n) - 2*sigma(n); the relation is the special case e=1, p=2 of the relation sigma(t^2*n) = (t+1)*sigma(t*n) - t*sigma(n) where t=p^e (p a prime).
%F G.f. is x times the logarithmic derivative of the g.f. of A182820.
%F a(2*n-1) = 7 * A008438(n) = 7 * sigma(2*n-1); special case of sigma(2^k*(2*n-1)) = (2^(k+1)-1) * sigma(2*n-1).
%F Sum_{k=1..n} a(k) = (11*Pi^2/24) * n^2 + O(n*log(n)). - _Amiram Eldar_, Dec 16 2022
%F G.f.: Sum_{k>=1} k*x^(k/gcd(k, 4))/(1 - x^(k/gcd(k, 4))). - _Miles Wilson_, Sep 29 2024
%t DivisorSigma[1,4*Range[70]] (* _Harvey P. Dale_, Jan 27 2015 *)
%o (PARI) vector(66, n, sigma(4*n, 1))
%Y Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), this sequence (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
%Y Cf. A008438, A008586, A182820.
%K nonn
%O 1,1
%A _Joerg Arndt_, Jul 30 2011