login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326124
a(n) is the sum of all divisors of the first n positive even numbers.
12
3, 10, 22, 37, 55, 83, 107, 138, 177, 219, 255, 315, 357, 413, 485, 548, 602, 693, 753, 843, 939, 1023, 1095, 1219, 1312, 1410, 1530, 1650, 1740, 1908, 2004, 2131, 2275, 2401, 2545, 2740, 2854, 2994, 3162, 3348, 3474, 3698, 3830, 4010, 4244, 4412, 4556, 4808, 4979, 5196, 5412, 5622, 5784, 6064, 6280
OFFSET
1,1
COMMENTS
A326123(n)/a(n) converges to 3/5.
a(n) is also the total area of the terraces of the first n even-indexed levels of the stepped pyramid described in A245092.
LINKS
FORMULA
a(n) = A024916(2n) - A326123(n).
a(n) ~ 5 * Pi^2 * n^2 / 24. - Vaclav Kotesovec, Aug 18 2021
EXAMPLE
For n = 3 the first three positive even numbers are [2, 4, 6] and their divisors are [1, 2], [1, 2, 4], [1, 2, 3, 6] respectively, and the sum of these divisors is 1 + 2 + 1 + 2 + 4 + 1 + 2 + 3 + 6 = 22, so a(3) = 22.
MAPLE
ListTools:-PartialSums(map(numtheory:-sigma, [seq(i, i=2..200, 2)])); # Robert Israel, Jun 12 2019
MATHEMATICA
Accumulate@ DivisorSigma[1, Range[2, 110, 2]] (* Michael De Vlieger, Jun 09 2019 *)
PROG
(PARI) terms(n) = my(s=0, i=0); for(k=1, n-1, if(i>=n, break); s+=sigma(2*k); print1(s, ", "); i++)
/* Print initial 50 terms as follows: */
terms(50) \\ Felix Fröhlich, Jun 08 2019
(PARI) a(n) = sum(k=1, 2*n, if (!(k%2), sigma(k))); \\ Michel Marcus, Jun 08 2019
(Python)
from math import isqrt
def A326124(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1, t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1, s+1))>>1) # Chai Wah Wu, Oct 21 2023
CROSSREFS
Partial sums of A062731.
Sequence in context: A161672 A190092 A174459 * A346166 A122795 A140066
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jun 07 2019
STATUS
approved