login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322398
Triangle of the coefficients of Touchard's chord enumerating polynomials, [x^k] S(n,x), 0 <= k <= n*(n-1)/2.
3
1, 1, 1, 2, 4, 3, 1, 5, 15, 21, 18, 10, 4, 1, 14, 56, 112, 148, 143, 109, 68, 35, 15, 5, 1, 42, 210, 540, 945, 1255, 1353, 1236, 984, 696, 441, 250, 126, 56, 21, 6, 1, 132, 792, 2475, 5335, 8866, 12112, 14182, 14654, 13646, 11619, 9131, 6662, 4529, 2870, 1691, 922, 462, 210, 84, 28, 7, 1, 429, 3003
OFFSET
1,4
LINKS
J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25, S_n(x).
EXAMPLE
The triangle starts:
1;
1, 1;
2, 4, 3, 1;
5, 15, 21, 18, 10, 4, 1;
14, 56, 112, 148, 143, 109, 68, 35, 15, 5, 1;
...
MAPLE
# page 3 prior to equation 2
Dpq := proc(p, q)
(p-q+1)*binomial(p+q, q)/(p+1) ;
end proc:
# page 12 top
fp1 := proc(p, x)
add( (-1)^i*Dpq(2*p-i, i)*x^((p+1-i)*(p-i)/2), i=0..p) ;
end proc:
# page 12
gnx := proc(n, x)
fp1(n, x)/(x-1)^n ;
taylor(%, x=0, 1+n*(n+1)/2) ;
convert(%, polynom) ;
end proc:
Snx := proc(n, x)
if n =0 then
0;
elif n =1 then
1;
else
# recurrence page 17
gnx(n, x)-add( gnx(n-i, x)*procname(i, x), i=1..n-1) ;
taylor(%, x=1, 1+n*(n+1)/2) ;
convert(%, polynom) ;
expand(%) ;
end if;
end proc:
for n from 1 to 8 do
S := Snx(n, x) ;
seq( coeff(S, x, i), i=0..n*(n-1)/2) ;
printf("\n") ;
end do:
MATHEMATICA
Dpq[p_, q_] := (p - q + 1)*Binomial[p + q, q]/(p + 1);
fp1[p_, x_] := Sum[(-1)^i*Dpq[2*p - i, i]*x^((p + 1 - i)*(p - i)/2), {i, 0, p}];
gnx[n_, x_] := fp1[n, x]/(x - 1)^n // Series[#, {x, 0, 1 + n*(n + 1)/2}]& // Normal;
Snx[n_, x_] := Snx[n, x] = Which[n == 0, 0, n == 1, 1, True, gnx[n, x] - Sum[gnx[n - i, x]*Snx[i, x], {i, 1, n - 1}] // Series[#, {x, 1, 1 + n*(n + 1)/2}]& // Normal];
Table[CoefficientList[Snx[n, x], x], {n, 1, 8}] // Flatten (* Jean-François Alcover, Jul 01 2023, after R. J. Mathar *)
CROSSREFS
Cf. A000108 (leading column), A001791 (2nd column), A000698 (row sums).
Sequence in context: A011170 A304337 A274329 * A341606 A109158 A307500
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Dec 06 2018
STATUS
approved