Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 01 2023 16:03:28
%S 1,1,1,2,4,3,1,5,15,21,18,10,4,1,14,56,112,148,143,109,68,35,15,5,1,
%T 42,210,540,945,1255,1353,1236,984,696,441,250,126,56,21,6,1,132,792,
%U 2475,5335,8866,12112,14182,14654,13646,11619,9131,6662,4529,2870,1691,922,462,210,84,28,7,1,429,3003
%N Triangle of the coefficients of Touchard's chord enumerating polynomials, [x^k] S(n,x), 0 <= k <= n*(n-1)/2.
%H Jean-François Alcover, <a href="/A322398/b322398.txt">Table of n, a(n) for n = 1..1350 (20 rows)</a>
%H J. Touchard, <a href="http://dx.doi.org/10.4153/CJM-1952-001-8">Sur un problème de configurations et sur les fractions continues</a>, Canad. J. Math., 4 (1952), 2-25, S_n(x).
%e The triangle starts:
%e 1;
%e 1, 1;
%e 2, 4, 3, 1;
%e 5, 15, 21, 18, 10, 4, 1;
%e 14, 56, 112, 148, 143, 109, 68, 35, 15, 5, 1;
%e ...
%p # page 3 prior to equation 2
%p Dpq := proc(p,q)
%p (p-q+1)*binomial(p+q,q)/(p+1) ;
%p end proc:
%p # page 12 top
%p fp1 := proc(p,x)
%p add( (-1)^i*Dpq(2*p-i,i)*x^((p+1-i)*(p-i)/2),i=0..p) ;
%p end proc:
%p # page 12
%p gnx := proc(n,x)
%p fp1(n,x)/(x-1)^n ;
%p taylor(%,x=0,1+n*(n+1)/2) ;
%p convert(%,polynom) ;
%p end proc:
%p Snx := proc(n,x)
%p if n =0 then
%p 0;
%p elif n =1 then
%p 1;
%p else
%p # recurrence page 17
%p gnx(n,x)-add( gnx(n-i,x)*procname(i,x),i=1..n-1) ;
%p taylor(%,x=1,1+n*(n+1)/2) ;
%p convert(%,polynom) ;
%p expand(%) ;
%p end if;
%p end proc:
%p for n from 1 to 8 do
%p S := Snx(n,x) ;
%p seq( coeff(S,x,i),i=0..n*(n-1)/2) ;
%p printf("\n") ;
%p end do:
%t Dpq[p_, q_] := (p - q + 1)*Binomial[p + q, q]/(p + 1);
%t fp1[p_, x_] := Sum[(-1)^i*Dpq[2*p - i, i]*x^((p + 1 - i)*(p - i)/2), {i, 0, p}];
%t gnx[n_, x_] := fp1[n, x]/(x - 1)^n // Series[#, {x, 0, 1 + n*(n + 1)/2}]& // Normal;
%t Snx[n_, x_] := Snx[n, x] = Which[n == 0, 0, n == 1, 1, True, gnx[n, x] - Sum[gnx[n - i, x]*Snx[i, x], {i, 1, n - 1}] // Series[#, {x, 1, 1 + n*(n + 1)/2}]& // Normal];
%t Table[CoefficientList[Snx[n, x], x], {n, 1, 8}] // Flatten (* _Jean-François Alcover_, Jul 01 2023, after _R. J. Mathar_ *)
%Y Cf. A000108 (leading column), A001791 (2nd column), A000698 (row sums).
%K nonn,tabf
%O 1,4
%A _R. J. Mathar_, Dec 06 2018