OFFSET
1,3
COMMENTS
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
G.f.=tz(1+t)/[1-tz-t^2z-(1+t)zA-zA^2], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
EXAMPLE
T(2,3)=3 because we have uUddd, UdUddd and Uuddd.
Triangle begins:
1,1;
2,4,3,1;
10,20,18,12,5,1;
66,132,122,92,54,24,7,1;
MAPLE
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=t*z*(1+t)/(1-t*z-t^2*z-(1+t)*z*A-z*A^2): Gser:=simplify(series(G, z=0, 10)): for n from 1 to 8 do P[n]:=coeff(Gser, z^n) od: for n from 1 to 8 do seq(coeff(P[n], t^k), k=1..2*n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 21 2005
STATUS
approved