OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
EXAMPLE
49 is in the sequence because 49 = prime(4)^2 = prime(prime(1)^2)^2.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
001: {}
003: {{1}}
005: {{2}}
007: {{1,1}}
009: {{1},{1}}
011: {{3}}
017: {{4}}
019: {{1,1,1}}
023: {{2,2}}
025: {{2},{2}}
027: {{1},{1},{1}}
031: {{5}}
041: {{6}}
049: {{1,1},{1,1}}
053: {{1,1,1,1}}
059: {{7}}
067: {{8}}
081: {{1},{1},{1},{1}}
083: {{9}}
097: {{3,3}}
103: {{2,2,2}}
109: {{10}}
121: {{3},{3}}
125: {{2},{2},{2}}
127: {{11}}
131: {{1,1,1,1,1}}
MATHEMATICA
Select[Range[1000], #===1||MatchQ[FactorInteger[#], {{_?(PrimePowerQ[PrimePi[#]]&), _}}]&]
PROG
(PARI) isok(n) = (n==1) || ((isprimepower(n, &p)) && isprimepower(primepi(p))); \\ Michel Marcus, Apr 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 10 2018
STATUS
approved