OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
EXAMPLE
25 is in the sequence because 25 = prime(3)^2 and 3 is a prime number.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
08: {{},{},{}}
09: {{1},{1}}
11: {{3}}
16: {{},{},{},{}}
17: {{4}}
25: {{2},{2}}
27: {{1},{1},{1}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
59: {{7}}
64: {{},{},{},{},{},{}}
67: {{8}}
81: {{1},{1},{1},{1}}
83: {{9}}
MATHEMATICA
Select[Range[1000], #===1||MatchQ[FactorInteger[#], {{_?(#===2||PrimeQ[PrimePi[#]]&), _}}]&]
PROG
(PARI) isok(n) = (n==1) || ((isprimepower(n, &p)) && ((p==2) || isprime(primepi(p)))); \\ Michel Marcus, Apr 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 10 2018
STATUS
approved