Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 11 2018 02:55:10
%S 1,3,5,7,9,11,17,19,23,25,27,31,41,49,53,59,67,81,83,97,103,109,121,
%T 125,127,131,157,179,191,211,227,241,243,277,283,289,311,331,343,353,
%U 361,367,401,419,431,461,509,529,547,563,587,599,617,625,661,691,709
%N Numbers that are powers of a prime number whose prime index is also a prime power (not including 1).
%C A prime index of n is a number m such that prime(m) divides n.
%e 49 is in the sequence because 49 = prime(4)^2 = prime(prime(1)^2)^2.
%e Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
%e 001: {}
%e 003: {{1}}
%e 005: {{2}}
%e 007: {{1,1}}
%e 009: {{1},{1}}
%e 011: {{3}}
%e 017: {{4}}
%e 019: {{1,1,1}}
%e 023: {{2,2}}
%e 025: {{2},{2}}
%e 027: {{1},{1},{1}}
%e 031: {{5}}
%e 041: {{6}}
%e 049: {{1,1},{1,1}}
%e 053: {{1,1,1,1}}
%e 059: {{7}}
%e 067: {{8}}
%e 081: {{1},{1},{1},{1}}
%e 083: {{9}}
%e 097: {{3,3}}
%e 103: {{2,2,2}}
%e 109: {{10}}
%e 121: {{3},{3}}
%e 125: {{2},{2},{2}}
%e 127: {{11}}
%e 131: {{1,1,1,1,1}}
%t Select[Range[1000],#===1||MatchQ[FactorInteger[#],{{_?(PrimePowerQ[PrimePi[#]]&),_}}]&]
%o (PARI) isok(n) = (n==1) || ((isprimepower(n, &p)) && isprimepower(primepi(p))); \\ _Michel Marcus_, Apr 10 2018
%Y Cf. A000961, A001222, A003963, A005117, A007425, A007716, A056239, A275024, A281113, A295931, A301764, A302242, A302243, A302498.
%K nonn
%O 1,2
%A _Gus Wiseman_, Apr 10 2018