login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342949
Odd numbers that are divisible by the product of their digits.
1
1, 3, 5, 7, 9, 11, 15, 111, 115, 135, 175, 315, 735, 1111, 1113, 1115, 1131, 1197, 1311, 1575, 1715, 3111, 3171, 3915, 7119, 9315, 11111, 11115, 11133, 11313, 11331, 11711, 13113, 13131, 13311, 17115, 31113, 31131, 31311, 33111, 35175, 51975, 77175, 111111, 111115, 111135
OFFSET
1,2
COMMENTS
Odd terms in A007602.
LINKS
EXAMPLE
135 is in the sequence as it is odd and it is divisible by the product of its digits namely 1*3*5 = 15.
MATHEMATICA
Select[Range[1, 100000, 2], Quiet@Mod[#, Times@@IntegerDigits@#]==0&] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
PROG
(PARI) is(n) = {if(n%2 == 0, return(0)); my(vp = vecprod(digits(n))); if(vp > 0, c = n/vp; if(denominator(c) == 1, return(1))); 0 } \\ David A. Corneth, Mar 30 2021
(Python)
from math import prod
def pd(o): return prod(int(d) for d in str(o))
def aupto(limit):
return [o for o in range(1, limit+1, 2) if pd(o) and o%pd(o) == 0]
print(aupto(111135)) # Michael S. Branicky, Mar 30 2021
CROSSREFS
Supersequence of repunits (A002275 \ {0}).
Sequence in context: A220077 A201649 A201644 * A322400 A322553 A302601
KEYWORD
nonn,base
AUTHOR
David A. Corneth, Mar 30 2021
STATUS
approved