OFFSET
1,2
COMMENTS
EXAMPLE
The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. The sequence of multiset partitions whose MM-numbers belong to this sequence begins:
1: {}
3: {{1}}
5: {{2}}
7: {{1,1}}
9: {{1},{1}}
11: {{3}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
31: {{5}}
41: {{6}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
57: {{1},{1,1,1}}
59: {{7}}
63: {{1},{1},{1,1}}
67: {{8}}
81: {{1},{1},{1},{1}}
83: {{9}}
97: {{3,3}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1, 100, 2], #==1||PrimePowerQ[Times@@primeMS[#]]&]
PROG
(PARI) isok(n) = {if (n % 2, my(f = factor(n), pk = prod(k=1, #f~, primepi(f[k, 1]))); (pk == 1) || isprimepower(pk); ); } \\ Michel Marcus, Dec 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 15 2018
STATUS
approved