The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322556 The number of eigenvectors with eigenvalue 1 summed over all linear operators on the vector space GF(2)^n. 0
 0, 1, 12, 448, 61440, 32505856, 67645734912, 558551906910208, 18374686479671623680, 2413129272746388704198656, 1266412660188944021221804081152, 2657157917355198038900481496478384128, 22295300680659888126120304278929453214597120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Generally, for any prime power q, the total number of eigenvectors corresponding to any element lambda in the field GF(q) summed over all operators on GF(q)^n is equal to (q^n-1)*q^(n^2-n). LINKS FORMULA a(n) = (2^n-1)*2^(n^2-n). MATHEMATICA Map[Total, Table[Table[(q^(n - k) - 1) Product[(q^n - q^i)^2/(q^k - q^i), {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0, 11}]] CROSSREFS Cf. A286331. Sequence in context: A291996 A192601 A092704 * A295413 A202799 A121348 Adjacent sequences:  A322553 A322554 A322555 * A322557 A322558 A322559 KEYWORD nonn AUTHOR Geoffrey Critzer, Aug 28 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 23:53 EDT 2021. Contains 347477 sequences. (Running on oeis4.)