|
|
A322557
|
|
Smallest k such that floor(N*sqrt(Sum_{m=1..k} 6/m^2)) = floor(N*Pi), where N = 10^n.
|
|
1
|
|
|
7, 23, 600, 1611, 10307, 359863, 1461054, 17819245, 266012440, 1619092245, 10634761313, 97509078554, 1203836807622, 10241799698090, 294871290395291, 4004525174270251, 24827457879988026, 112840588371964574, 2064072875704476882, 15243903003939891921
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
6*A007406(k)/A007407(k) = Sum_{m=1..k} 6/m^2.
It seems nearly certain that, for all n >= 0, a(n) = ceiling(z - 1/2 - 1/(12*z)) where z = 6/(Pi^2 - (floor(Pi*10^n)/10^n)^2). - Jon E. Schoenfield, Aug 31 2019
|
|
LINKS
|
Table of n, a(n) for n=0..19.
Zachary Russ, Klarice Sequence
Jon E. Schoenfield, Magma program
|
|
EXAMPLE
|
floor((10^0)*sqrt(Sum_{m=1..7} 6/m^2)) = 3.
floor((10^1)*sqrt(Sum_{m=1..23} 6/m^2)) = 31.
floor((10^2)*sqrt(Sum_{m=1..600} 6/m^2)) = 314.
floor((10^3)*sqrt(Sum_{m=1..1611} 6/m^2)) = 3141.
floor((10^4)*sqrt(Sum_{m=1..10307} 6/m^2)) = 31415.
floor((10^5)*sqrt(Sum_{m=1..359863} 6/m^2)) = 314159.
|
|
PROG
|
(PARI) a(n) = {my(k = 1); t = floor(10^(n)*Pi); while(floor(10^(n)*sqrt(sum(m = 1, k, 6/m^2))) != t, k++); k; } \\ Jinyuan Wang, Aug 30 2019
|
|
CROSSREFS
|
Cf. A000796, A013661, A013679, A002388, A274982, A007406, A007407.
Cf. A011545 (floor(Pi*10^n)).
Sequence in context: A299643 A034192 A050918 * A228699 A159485 A009047
Adjacent sequences: A322554 A322555 A322556 * A322558 A322559 A322560
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Zachary Russ, Aug 28 2019
|
|
EXTENSIONS
|
a(6)-a(19) from Jon E. Schoenfield, Aug 31 2019
|
|
STATUS
|
approved
|
|
|
|