login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322560
One of the two successive approximations up to 17^n for 17-adic integer sqrt(2). This is the 11 (mod 17) case (except for n = 0).
5
0, 11, 45, 623, 39927, 958658, 17996942, 66272080, 886949426, 63668766395, 1723899037353, 3739892937802, 38011789245435, 2951122975394240, 111901481337359547, 1795679746931368837, 27557487210519710974, 708814173469855869708, 2363294697242529398062
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique solution to x^2 == 2 (mod 17^n) in the range [0, 17^n - 1] and congruent to 11 modulo 17.
A322559 is the approximation (congruent to 6 mod 17) of another square root of 2 over the 17-adic field.
FORMULA
For n > 0, a(n) = 17^n - A322559(n).
a(n) = Sum_{i=0..n-1} A322562(i)*17^i.
a(n) = A286877(n)*A322563(n) mod 17^n = A286878(n)*A322564(n) mod 17^n.
EXAMPLE
11^2 = 121 = 7*17 + 2;
45^2 = 2025 = 7*17^2 + 2;
623^2 = 388129 = 79*17^3 + 2.
PROG
(PARI) a(n) = truncate(-sqrt(2+O(17^n)))
CROSSREFS
Approximations of 17-adic square roots:
A286877, A286878 (sqrt(-1));
A322559, this sequence (sqrt(2));
A322563, A322564 (sqrt(-2)).
Sequence in context: A072262 A231224 A231438 * A110114 A116193 A282095
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 29 2019
STATUS
approved