Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #75 Sep 03 2019 16:53:59
%S 7,23,600,1611,10307,359863,1461054,17819245,266012440,1619092245,
%T 10634761313,97509078554,1203836807622,10241799698090,294871290395291,
%U 4004525174270251,24827457879988026,112840588371964574,2064072875704476882,15243903003939891921
%N Smallest k such that floor(N*sqrt(Sum_{m=1..k} 6/m^2)) = floor(N*Pi), where N = 10^n.
%C 6*A007406(k)/A007407(k) = Sum_{m=1..k} 6/m^2.
%C It seems nearly certain that, for all n >= 0, a(n) = ceiling(z - 1/2 - 1/(12*z)) where z = 6/(Pi^2 - (floor(Pi*10^n)/10^n)^2). - _Jon E. Schoenfield_, Aug 31 2019
%H Zachary Russ, <a href="https://www.desmos.com/calculator/jdnvwymx9p">Klarice Sequence</a>
%H Jon E. Schoenfield, <a href="/A322557/a322557.txt">Magma program</a>
%e floor((10^0)*sqrt(Sum_{m=1..7} 6/m^2)) = 3.
%e floor((10^1)*sqrt(Sum_{m=1..23} 6/m^2)) = 31.
%e floor((10^2)*sqrt(Sum_{m=1..600} 6/m^2)) = 314.
%e floor((10^3)*sqrt(Sum_{m=1..1611} 6/m^2)) = 3141.
%e floor((10^4)*sqrt(Sum_{m=1..10307} 6/m^2)) = 31415.
%e floor((10^5)*sqrt(Sum_{m=1..359863} 6/m^2)) = 314159.
%o (PARI) a(n) = {my(k = 1); t = floor(10^(n)*Pi); while(floor(10^(n)*sqrt(sum(m = 1, k, 6/m^2))) != t, k++); k; } \\ _Jinyuan Wang_, Aug 30 2019
%Y Cf. A000796, A013661, A013679, A002388, A274982, A007406, A007407.
%Y Cf. A011545 (floor(Pi*10^n)).
%K nonn,base
%O 0,1
%A _Zachary Russ_, Aug 28 2019
%E a(6)-a(19) from _Jon E. Schoenfield_, Aug 31 2019