login
A302598
G.f.: Sum_{n>=0} (1 + (1+x)^n)^n / (2 + (1+x)^n)^(n+1).
8
1, 1, 6, 58, 798, 14150, 307076, 7881756, 233536532, 7844786248, 294582696686, 12228351266210, 556017625969246, 27482790417322218, 1467194712330407238, 84134395928742550138, 5157545958316518485420, 336574587493456290969620, 23296320082405927961459550, 1704662916739625989249415610, 131480805016085834305348796128
OFFSET
0,3
COMMENTS
The following identity holds for |y| <= 1 and fixed real k > 0:
Sum_{n>=0} (k + y^n)^n/(1+k + y^n)^(n+1) = Sum_{n>=0} (y^n - 1)^n/(1+k - k*y^n)^(n+1).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..360 (terms 0..200 from Paul D. Hanna)
FORMULA
G.f.: Sum_{n>=0} ((1+x)^n - 1)^n / (2 - (1+x)^n)^(n+1).
G.f.: Sum_{n>=0} ((1+x)^n + 1)^n / (2 + (1+x)^n)^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.9561842030261697545408021818783008332999988095... and c = 0.274656497660429769528095546948772676444158... - Vaclav Kotesovec, Aug 09 2018
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 58*x^3 + 798*x^4 + 14150*x^5 + 307076*x^6 + 7881756*x^7 + 233536532*x^8 + 7844786248*x^9 + 294582696686*x^10 + ...
such that
A(x) = 1/3 + (1 + (1+x))/(2 + (1+x))^2 + (1 + (1+x)^2)^2/(2 + (1+x)^2)^3 + (1 + (1+x)^3)^3/(2 + (1+x)^3)^4 + (1 + (1+x)^4)^4/(2 + (1+x)^4)^5 + (1 + (1+x)^5)^5/(2 + (1+x)^5)^6 + (1 + (1+x)^6)^6/(2 + (1+x)^6)^7 + ...
Also,
A(x) = 1 + ((1+x) - 1)/(2 - (1+x))^2 + ((1+x)^2 - 1)^2/(2 - (1+x)^2)^3 + ((1+x)^3 - 1)^3/(2 - (1+x)^3)^4 + ((1+x)^4 - 1)^4/(2 - (1+x)^4)^5 + ((1+x)^5 - 1)^5/(2 - (1+x)^5)^6 + ((1+x)^6 - 1)^6/(2 - (1+x)^6)^7 + ...
RELATED INFINITE SERIES.
(1) At x = -1/2: the following sums are equal
S1 = Sum_{n>=0} 2^n * (2^n + 1)^n/(2^(n+1) + 1)^(n+1)
S1 = Sum_{n>=0} (-2)^n * (2^n - 1)^n/(2^(n+1) - 1)^(n+1).
Explicitly,
S1 = 1/3 + 2*3/5^2 + 4*5^2/9^3 + 8*9^3/17^4 + 16*17^4/33^5 + 32*33^5/65^6 + 64*65^6/129^7 + 128*129^7/257^8 + 256*257^8/513^9 + 512*513^9/1025^10 + ...
S1 = 1 - 2*1/3^2 + 4*3^2/7^3 - 8*7^3/15^4 + 16*15^4/31^5 - 32*31^5/63^6 + 64*63^6/127^7 - 128*127^7/255^8 + 256*255^8/511^9 - 512*511^9/1023^10 + ...
where S1 = 0.84714730053329880291591114748812485885366310294051236295420...
(2) At x = -2/3: the following sums are equal
S2 = Sum_{n>=0} 3^n * (1 + 3^n)^n / (2*3^n + 1)^(n+1)
S2 = Sum_{n>=0} (-3)^n * (3^n - 1)^n / (2*3^n - 1)^(n+1).
Explicitly,
S2 = 1/3 + 3*4/7^2 + 9*10^2/19^3 + 27*28^3/55^4 + 81*82^4/163^5 + 243*244^5/487^6 + 729*730^6/1459^7 + 2187*2188^7/4375^8 + 6561*6562^8/13123^9 + 19683*19684^9/39367^10 + ...
S2 = 1 - 3*2^1/5^2 + 9*8^2/17^3 - 27*26^3/53^4 + 81*80^4/161^5 - 243*242^5/485^6 + 729*728^6/1457^7 - 2187*2186^7/4373^8 + 6561*6560^8/13121^9 - 19683*19682^9/39365^10 + ...
where S2 = 0.837457334418049175936255584889342515316005199043439291643371...
(3) At x = -1/3: the following sums are equal
S3 = Sum_{n>=0} 3^n * (2^n + 3^n)^n/(2*3^n + 2^n)^(n+1)
S3 = Sum_{n>=0} (-3)^n * (3^n - 2^n)^n/(2*3^n - 2^n)^(n+1).
Explicitly,
S3 = 1/3 + 3*5/8^2 + 9*13^2/22^3 + 27*35^3/62^4 + 81*97^4/178^5 + 243*275^5/518^6 + 729*793^6/1522^7 + 2187*2315^7/4502^8 + 6561*6817^8/13378^9 + 19683*20195^9/39878^10 + ...
S3 = 1 - 3*1/4^2 + 9*5^2/14^3 - 27*19^3/46^4 + 81*65^4/146^5 - 243*211^5/454^6 + 729*665^6/1394^7 - 2187*2059^7/4246^8 + 6561*6305^8/12866^9 - 19683*19171^9/38854^10 + ...
where S3 = 0.867357695200699139470956415922046910279987551651352471994920...
PROG
(PARI) {a(n) = my(A=1, o=x*O(x^n)); A = sum(m=0, n, ((1+x +o)^m - 1)^m / (2 - (1+x +o)^m)^(m+1)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 10 2018
STATUS
approved