login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302614
G.f.: Sum_{n>=0} (2 + (1+x)^n)^n / (3 + (1+x)^n)^(n+1).
4
1, 1, 8, 91, 1474, 30765, 785053, 23682833, 824522797, 32537599175, 1435199414014, 69973425937141, 3736662443907962, 216901789032691605, 13598124265965160130, 915670842666691879191, 65913110467411283181409, 5050836914009172555862713, 410501468976427335127369669, 35269929119728622895198302033, 3194195105084750546987502710855
OFFSET
0,3
COMMENTS
The following identity holds for |y| <= 1 and fixed real k > 0:
Sum_{n>=0} (k + y^n)^n/(1+k + y^n)^(n+1) = Sum_{n>=0} (y^n - 1)^n/(1+k - k*y^n)^(n+1).
LINKS
FORMULA
G.f.: Sum_{n>=0} ((1+x)^n - 1)^n / (3 - 2*(1+x)^n)^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = 4.64471605501103711823541367464... and c = 0.270134222044915506270113032... - Vaclav Kotesovec, Aug 10 2018
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 91*x^3 + 1474*x^4 + 30765*x^5 + 785053*x^6 + 23682833*x^7 + 824522797*x^8 + 32537599175*x^9 + ...
such that
A(x) = 1/4 + (2 + (1+x))/(3 + (1+x))^2 + (2 + (1+x)^2)^2/(3 + (1+x)^2)^3 + (2 + (1+x)^3)^3/(3 + (1+x)^3)^4 + (2 + (1+x)^4)^4/(3 + (1+x)^4)^5 + (2 + (1+x)^5)^5/(3 + (1+x)^5)^6 + (2 + (1+x)^6)^6/(3 + (1+x)^6)^7 + ...
Also,
A(x) = 1 + ((1+x) - 1)/(3 - 2*(1+x))^2 + ((1+x)^2 - 1)^2/(3 - 2*(1+x)^2)^3 + ((1+x)^3 - 1)^3/(3 - 2*(1+x)^3)^4 + ((1+x)^4 - 1)^4/(3 - 2*(1+x)^4)^5 + ((1+x)^5 - 1)^5/(3 - 2*(1+x)^5)^6 + ((1+x)^6 - 1)^6/(3 - 2*(1+x)^6)^7 + ...
RELATED INFINITE SERIES.
(1) At x = -1/3: the following sums are equal
S1 = Sum_{n>=0} 3^n * (2*3^n + 2^n)^n / (3^(n+1) + 2^n)^(n+1),
S1 = Sum_{n>=0} (-3)^n * (3^n - 2^n)^n / (3^(n+1) - 2^(n+1))^(n+1).
Explicitly,
S1 = 1/4 + 3*8/11^2 + 9*22^2/31^3 + 27*62^3/89^4 + 81*178^4/259^5 + 243*518^5/761^6 + 729*1522^6/2251^7 + 2187*4502^7/6689^8 + 6561*13378^8/19939^9 + 19683*39878^9/59561^10 + ...
S1 = 1 - 3*1/5^2 + 9*5^2/19^3 - 27*19^3/65^4 + 81*65^4/211^5 - 243*211^5/665^6 + 729*665^6/2059^7 - 2187*2059^7/6305^8 + 6561*6305^8/19171^9 - 19683*19171^9/58025^10 + ...
where S1 = 0.90501051059439877583104471171480036033530856741889530664913...
(2) At x = -1/2: the following sums are equal
S2 = Sum_{n>=0} 2^n * (2^(n+1) + 1)^n / (3*2^n + 1)^(n+1),
S2 = Sum_{n>=0} (-2)^n * (2^n - 1)^n / (3*2^n - 2)^(n+1).
Explicitly,
S2 = 1/4 + 2*5/7^2 + 4*9^2/13^3 + 8*17^3/25^4 + 16*33^4/49^5 + 32*65^5/97^6 + 64*129^6/193^7 + 128*257^7/385^8 + 256*513^8/769^9 + 512*1025^9/1537^10 + ...
S2 = 1 - 2*1/4^2 + 4*3^2/10^3 - 8*7^3/22^4 + 16*15^4/46^5 - 32*31^5/94^6 + 64*63^6/190^7 - 128*127^7/382^8 + 256*255^8/766^9 - 512*511^9/1534^10 + ...
where S2 = 0.90222608896798122564942421232120719521782835530371831680447...
PROG
(PARI) {a(n) = my(A=1, o=x*O(x^n)); A = sum(m=0, n, ((1+x +o)^m - 1)^m / (3 - 2*(1+x +o)^m)^(m+1)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 10 2018
STATUS
approved