login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303743
a(n) is a number of lattice points in 3D Cartesian grid between cube with edge length 2*n centered in origin and its inscribed sphere. Three pairs of the cube's faces are parallel to the planes XOY, XOZ, YOZ respectively.
0
0, 0, 8, 92, 220, 412, 784, 1272, 1848, 2696, 3692, 5020, 6460, 8176, 10248, 12720, 15464, 18476, 21988, 25924, 30016, 35040, 40248, 46052, 52388, 59132, 66364, 74416, 83256, 92304, 102500, 112988, 124076, 136252, 148936, 162648, 176928, 192332, 208100, 225284, 243088
OFFSET
1,3
COMMENTS
If two parallel faces of the inscribed cube are parallel XOY-plane and other two pairs are parallel planes x=y and x=-y respectively we'll have another sequence.
FORMULA
a(n) = A016755(n-1) - A000605(n) - 6.
EXAMPLE
For n=3 we have 8 points between the defined cube and its inscribed sphere:
(-2,-2,-2)
(-2,-2, 2)
(-2, 2,-2)
(-2, 2, 2)
( 2,-2,-2)
( 2,-2, 2)
( 2, 2,-2)
( 2, 2, 2)
PROG
(Python)
for n in range (1, 42):
count=0
n2 = n*n
for x in range(-n+1, n):
for y in range(-n+1, n):
for z in range(-n+1, n):
if x*x+y*y+z*z > n2:
count += 1
print(count)
(PARI) a(n) = sum(x=-n+1, n-1, sum(y=-n+1, n-1, sum(z=-n+1, n-1, x*x+y*y+z*z>n^2))); \\ Michel Marcus, Jun 23 2018
CROSSREFS
For the 2D case see A303642.
Sequence in context: A298013 A302614 A220573 * A187157 A332597 A331448
KEYWORD
nonn
AUTHOR
Kirill Ustyantsev, Apr 29 2018
STATUS
approved