|
|
A303740
|
|
Primes of the form 9*k^2 + 3*k + 1 (A082040).
|
|
2
|
|
|
13, 43, 157, 241, 463, 601, 757, 1123, 2971, 3307, 4423, 4831, 5701, 6163, 8191, 9901, 11131, 12433, 13807, 19183, 20023, 21757, 22651, 23563, 26407, 28393, 35911, 37057, 53593, 60763, 78121, 83233, 95791, 113233, 117307, 121453, 123553, 127807, 136531
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MAPLE
|
select(isprime, [seq(9*n^2+3*n+1, n=0..500)]);
|
|
MATHEMATICA
|
Select[Table[9 n^2 + 3 n + 1, {n, 0, 150}], PrimeQ] (* Vincenzo Librandi, Jun 25 2018 *)
|
|
PROG
|
(GAP) Filtered(List([0..300], n->9*n^2+3*n+1), IsPrime);
(Magma) [a: n in [0..200] | IsPrime(a) where a is 9*n^2 +3*n+1 ]; // Vincenzo Librandi, Jun 25 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|