login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268256
Number of length-(n+1) 0..3 arrays with new repeated values introduced in sequential order starting with zero.
1
13, 43, 143, 479, 1616, 5492, 18804, 64869, 225483, 789747, 2787100, 9910252, 35501416, 128109313, 465606659, 1704022367, 6278399432, 23282368196, 86873186508, 326055377709, 1230562324251, 4668500002491, 17797745988388
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 13*a(n-1) - 60*a(n-2) + 105*a(n-3) - 11*a(n-4) - 94*a(n-5) - 24*a(n-6).
Empirical g.f.: x*(13 - 126*x + 364*x^2 - 165*x^3 - 403*x^4 - 96*x^5) / ((1 - 3*x)*(1 - 4*x)*(1 - 3*x - x^2)*(1 - 3*x - 2*x^2)). - Colin Barker, Jan 11 2019
EXAMPLE
Some solutions for n=8:
..0....0....1....1....0....2....0....1....2....2....0....0....2....2....3....0
..1....2....2....3....1....3....0....0....0....3....1....3....1....1....0....0
..3....0....3....0....2....0....0....3....0....1....3....1....0....3....1....0
..2....2....1....1....3....0....3....0....0....0....2....0....0....2....0....1
..3....1....0....0....2....1....2....0....1....3....3....3....0....0....3....0
..2....2....1....0....1....2....1....3....3....1....0....2....1....0....2....0
..1....3....2....1....3....1....3....1....0....0....0....0....3....2....1....0
..2....0....1....1....1....0....2....0....3....0....3....0....1....3....0....1
..0....3....2....3....3....1....0....3....2....3....2....1....2....1....1....2
CROSSREFS
Column 3 of A268261.
Sequence in context: A067260 A135241 A225774 * A243894 A303740 A243029
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 29 2016
STATUS
approved