|
|
A303741
|
|
Numbers k such that A(k+1) = A(k) + 2, where A() = A005101() are the abundant numbers.
|
|
4
|
|
|
2, 7, 10, 14, 16, 19, 22, 23, 26, 31, 36, 39, 44, 45, 48, 51, 52, 59, 62, 65, 70, 71, 74, 79, 81, 82, 83, 86, 87, 90, 93, 96, 99, 104, 107, 110, 111, 114, 118, 120, 125, 128, 131, 133, 135, 138, 141, 146, 149, 150, 155, 156, 158, 164, 169, 170, 175, 178, 179
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Muniru A Asiru, Table of n, a(n) for n = 1..5000
|
|
FORMULA
|
Sequence is { k | A005101(k+1) = A005101(k) + 2 }.
|
|
MAPLE
|
with(numtheory): A:=select(n->sigma(n)>2*n, [$1..1000]): a:=select(j->A[j+1]=A[j]+2, [$1..nops(A)-1]);
|
|
PROG
|
(GAP) A:=Filtered([1..1000], n->Sigma(n)>2*n);; a:=Filtered([1..Length(A)-1], i->A[i+1]=A[i]+2);
|
|
CROSSREFS
|
A231086 is the main entry for this sequence.
Cf. A005101, A096399, A169822.
Sequence in context: A297832 A003158 A130336 * A085303 A304799 A349499
Adjacent sequences: A303738 A303739 A303740 * A303742 A303743 A303744
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Muniru A Asiru, Jun 22 2018
|
|
STATUS
|
approved
|
|
|
|