login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332597
Number of edges in a "frame" of size n X n (see Comments in A331776 for definition).
3
8, 92, 360, 860, 1792, 3124, 5256, 8188, 12304, 17460, 24568, 33244, 44688, 58228, 74664, 94028, 118080, 145380, 178568, 216252, 259776, 308276, 365352, 428556, 501152, 580804, 670536, 768908, 880992, 1001764, 1138248, 1286748, 1449984, 1625300, 1817752, 2023740, 2252048, 2495476, 2759304, 3040460, 3349056
OFFSET
1,1
COMMENTS
See A331776 for many other illustrations.
Theorem. Let z(n) = Sum_{i, j = 1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) (this is A115004) and z_2(n) = Sum_{i, j = 1..n, gcd(i,j)=2} (n+1-i)*(n+1-j) (this is A331761). Then, for n >= 2, a(n) = 8*z(n) - 4*z_2(n) + 28*n^2 - 44*n + 8. - Scott R. Shannon and N. J. A. Sloane, Mar 06 2020
LINKS
Scott R. Shannon, Colored illustration for a(3) = 360 (there are 360 edges in this picture).
FORMULA
For n > 1, a(n) = 4*(n-1)*(8*n-1) + 8*Sum_{i=2..floor(n/2)} (n+1-i)*(n+i+1)*phi(i) + 8*Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
MAPLE
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 8 else 28*n^2 - 44*n + 8 + 8*V(n, n, 1) - 4*V(n, n, 2); fi;
[seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
PROG
(Python)
from sympy import totient
def A332597(n): return 8 if n == 1 else 4*(n-1)*(8*n-1) + 8*sum(totient(i)*(n+1-i)*(n+i+1) for i in range(2, n//2+1)) + 8*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1, n+1)) # Chai Wah Wu, Aug 16 2021
CROSSREFS
Cf. A115004, A331761, A331776 (regions), A332598 (vertices).
Sequence in context: A220573 A303743 A187157 * A331448 A215057 A222400
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from N. J. A. Sloane, Mar 10 2020
STATUS
approved